Home  >  Article  >  Backend Development  >  How to Convert a Pandas Column with NaN Values to Integer Type?

How to Convert a Pandas Column with NaN Values to Integer Type?

Patricia Arquette
Patricia ArquetteOriginal
2024-11-18 01:47:02599browse

How to Convert a Pandas Column with NaN Values to Integer Type?

Converting Pandas Column Containing NaN to Dtype Int

To convert a Pandas column containing missing values (NaNs) to integer type, pandas version 0.24. introduces the nullable Integer Data Type, represented by IntegerArray.

Nullable Integer Data Type

Arrays.IntegerArray allows the representation of integer data with missing values. It differs from the default integer dtype and must be explicitly specified when creating an array or Series.

Example:

import pandas as pd

arr = pd.array([1, 2, np.nan], dtype=pd.Int64Dtype())
pd.Series(arr)

# Output:
0      1
1      2
2    NaN
dtype: Int64

Converting a Column to Nullable Integers

df['myCol'] = df['myCol'].astype('Int64')

This will convert the column 'myCol' to nullable integers, allowing missing values to be represented as NaN.

The above is the detailed content of How to Convert a Pandas Column with NaN Values to Integer Type?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn