search
HomeBackend DevelopmentC++How Can We Implement Recursive Macros in C?

How Can We Implement Recursive Macros in C?

Understanding Macro Recursion for Macro Arguments

In C programming, macros offer a powerful tool for text manipulation. One intriguing aspect is the ability to use macros on the arguments of other macros. However, this presents a technical challenge, as recursive macros are generally not allowed in the language.

The Problem: Recursive Macros

Consider the scenario where we wish to create a foreach macro, named PRINT_ALL, that applies a given macro, PRINT, to a list of arguments. For instance:

int a = 1, b = 3, d = 0;
PRINT_ALL(a,b,d);

This would invoke the PRINT macro on each of the variables a, b, and d. The naïve approach might employ a recursive macro, as follows:

#define FIRST_ARG(arg,...) arg
#define AFTER_FIRST_ARG(arg,...) , ##__VA_ARGS__
#define PRINT(a) printf(#a": %d", a)
#define PRINT_ALL PRINT(FIRST_ARG(__VA_ARGS__)); PRINT_ALL(AFTER_FIRST_ARG(__VA_ARGS__))

However, this approach poses two problems: macros cannot call themselves recursively, and it lacks a stopping condition to halt the recursion.

A Recursive Workaround

To overcome these hurdles, a clever workaround leverages a technique known as macro eval-recursion. The key idea is to emit macro text that simulates a macro call without actually invoking the macro itself.

Consider the following macro:

#define MAP_OUT

If we have the following macros:

#define A(x) x B MAP_OUT (x)
#define B(x) x A MAP_OUT (x)

Evaluating the macro A(blah) produces the output text:

blah B (blah)

This text serves as a macro replacement placeholder. It can be passed back into the preprocessor to be further expanded, continuing the macro evaluation process.

To facilitate this recursion, a series of EVAL macros are defined:

#define EVAL0(...) __VA_ARGS__
#define EVAL1(...) EVAL0(EVAL0(EVAL0(__VA_ARGS__)))
#define EVAL2(...) EVAL1(EVAL1(EVAL1(__VA_ARGS__)))
#define EVAL3(...) EVAL2(EVAL2(EVAL2(__VA_ARGS__)))
#define EVAL4(...) EVAL3(EVAL3(EVAL3(__VA_ARGS__)))
#define EVAL(...)EVAL4(EVAL4(EVAL4(__VA_ARGS__)))

Each macro applies multiple levels of evaluation, thus amplifying the effect of the macros being applied.

Stopping the Recursion

To control the recursion, a special macro, MAP_END, is defined:

#define MAP_END(...)

Evaluating this macro does nothing, effectively terminating the recursion.

The next challenge is to determine when to use MAP_END instead of continuing the recursion. To achieve this, a MAP_NEXT macro compares a list item against a special end-of-list marker. If they match, it returns MAP_END; otherwise, it returns the next parameter:

#define MAP_GET_END() 0, MAP_END
#define MAP_NEXT0(item, next, ...) next MAP_OUT
#define MAP_NEXT1(item, next) MAP_NEXT0(item, next,0)
#define MAP_NEXT(item, next) MAP_NEXT1(MAP_GET_END item, next)

By carefully constructing the MAP_NEXT macro, we can control whether the recursion continues or ends.

Final Implementation

Combining these building blocks, we can create the MAP macro that iterates over a list and applies a given macro to each item:

#define MAP(f,...)EVAL(MAP1(f,__VA_ARGS__,(),0))

This macro works by placing an end-of-list marker at the end of the list, along with an extra argument to ensure ANSI compliance. It then passes the list through multiple EVAL macro calls and returns the result.

This technique provides a creative solution to the problem of using macros on macro arguments. It enables sophisticated macro manipulation capabilities, allowing programmers to extend the functionality of the preprocessor in novel ways.

The above is the detailed content of How Can We Implement Recursive Macros in C?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Debunking the Myths: Is C   Really a Dead Language?Debunking the Myths: Is C Really a Dead Language?May 05, 2025 am 12:11 AM

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

C# vs. C  : A Comparative Analysis of Programming LanguagesC# vs. C : A Comparative Analysis of Programming LanguagesMay 04, 2025 am 12:03 AM

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

Building XML Applications with C  : Practical ExamplesBuilding XML Applications with C : Practical ExamplesMay 03, 2025 am 12:16 AM

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

XML in C  : Handling Complex Data StructuresXML in C : Handling Complex Data StructuresMay 02, 2025 am 12:04 AM

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.

C   and Performance: Where It Still DominatesC and Performance: Where It Still DominatesMay 01, 2025 am 12:14 AM

C still dominates performance optimization because its low-level memory management and efficient execution capabilities make it indispensable in game development, financial transaction systems and embedded systems. Specifically, it is manifested as: 1) In game development, C's low-level memory management and efficient execution capabilities make it the preferred language for game engine development; 2) In financial transaction systems, C's performance advantages ensure extremely low latency and high throughput; 3) In embedded systems, C's low-level memory management and efficient execution capabilities make it very popular in resource-constrained environments.

C   XML Frameworks: Choosing the Right One for YouC XML Frameworks: Choosing the Right One for YouApr 30, 2025 am 12:01 AM

The choice of C XML framework should be based on project requirements. 1) TinyXML is suitable for resource-constrained environments, 2) pugixml is suitable for high-performance requirements, 3) Xerces-C supports complex XMLSchema verification, and performance, ease of use and licenses must be considered when choosing.

C# vs. C  : Choosing the Right Language for Your ProjectC# vs. C : Choosing the Right Language for Your ProjectApr 29, 2025 am 12:51 AM

C# is suitable for projects that require development efficiency and type safety, while C is suitable for projects that require high performance and hardware control. 1) C# provides garbage collection and LINQ, suitable for enterprise applications and Windows development. 2)C is known for its high performance and underlying control, and is widely used in gaming and system programming.

How to optimize codeHow to optimize codeApr 28, 2025 pm 10:27 PM

C code optimization can be achieved through the following strategies: 1. Manually manage memory for optimization use; 2. Write code that complies with compiler optimization rules; 3. Select appropriate algorithms and data structures; 4. Use inline functions to reduce call overhead; 5. Apply template metaprogramming to optimize at compile time; 6. Avoid unnecessary copying, use moving semantics and reference parameters; 7. Use const correctly to help compiler optimization; 8. Select appropriate data structures, such as std::vector.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft