Understanding the Rational Behind C 11's POD Standard Layout Definition
The Standard Layout Sequence (SLS) of a class in C 11 is meticulously defined to facilitate efficient data transfer operations. The rationale behind its stringent constraints lies in the following considerations:
Consistent Access Control for Data Members
The requirement for uniform access control (public or private) among all non-static data members ensures that when an object's address is cast to a pointer to its first member, the access level of the member can be reliably determined.
Simplified Data Member Ordering
The restriction on having multiple base classes with non-static data members ensures a consistent and deterministic allocation order for data members within an object. Without this rule, the compiler would lack the ability to determine which member would be allocated first, making the cast from an object address to a pointer to its first member unreliable.
Avoiding Address Conflicts
The prohibition against base classes having the same type as the first non-static data member prevents potential address conflicts. In memory layouts where base classes are placed before derived class objects, a padding byte would be required to separate the base class and the derived class data member, complicating the casting process.
To illustrate the potential consequences of violating these constraints:
- Varying Access Controls: If data members could have different access levels, it would be challenging to determine the appropriate access level when casting an object address to a pointer to its first member. This could lead to unpredictable or erroneous results.
- First Data Member as Base Class: With this construction, the base class and the first data member would have the same address, violating the assumption that distinct objects of the same type have unique addresses. This would make the cast from an object address to a pointer to its first member unreliable.
By adhering to these restrictions, C 11's SLS ensures the reliable and consistent casting of object addresses, facilitating efficient data transfer operations.
The above is the detailed content of Why does C 11 define a strict Standard Layout Sequence for classes?. For more information, please follow other related articles on the PHP Chinese website!

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Linux new version
SublimeText3 Linux latest version

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function