


Error Handling in Posting JSON Data from JavaScript to FastAPI
To send data from a JavaScript frontend to a FastAPI backend, you must ensure the data is passed in the correct format and to the appropriate endpoint. If you encounter a 422 Unprocessable Entity error, it's likely due to incorrect data formatting.
Query Parameters vs. JSON Parameters
By default, FastAPI interprets function parameters not included in the path as query parameters. However, for JSON data, you need to specify it explicitly using one of the following methods:
1. Pydantic Model:
Define a Pydantic model to represent the JSON data structure:
from pydantic import BaseModel class Item(BaseModel): eth_addr: str @app.post('/ethAddress') def add_eth_addr(item: Item): return item
2. Body Type:
Use the Body type to specify that the parameter should be parsed from the request body:
from fastapi import Body @app.post('/ethAddress') def add_eth_addr(eth_addr: str = Body()): return {'eth_addr': eth_addr}
3. Body Embed:
For a single body parameter, you can use the embed=True argument to automatically parse the data from the request body:
from fastapi import Body @app.post('/ethAddress') def add_eth_addr(eth_addr: str = Body(embed=True)): return {'eth_addr': eth_addr}
JavaScript Fetch API
When using the Fetch API in JavaScript to send JSON data, you must set the Content-Type header to application/json and specify the data in the body field:
fetch("http://localhost:8000/ethAddress", { method: "POST", headers: { 'Accept': 'application/json', 'Content-Type': 'application/json' }, body: JSON.stringify({ "eth_addr": "some address" }), });
Additional Resources
For more information and detailed examples, refer to the following documentation and resources:
- [FastAPI JSON Request and Response](https://fastapi.tiangolo.com/tutorial/body/)
- [Sending JSON data with POST requests in JavaScript](https://stackoverflow.com/questions/44832885/sending-json-data-with-post-requests-in-javascript)
- [POST request with JSON content in JavaScript using Fetch API](https://stackoverflow.com/questions/55749929/post-request-with-json-content-in-javascript-using-fetch-api)
The above is the detailed content of How to Handle Errors When Sending JSON Data from JavaScript to FastAPI?. For more information, please follow other related articles on the PHP Chinese website!

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use

Dreamweaver CS6
Visual web development tools

Atom editor mac version download
The most popular open source editor
