


How can I Fill Missing Values in One Column with Data From Another Column in Pandas?
Utilizing the Power of fillna() to Impute Missing Values with an Entire Column
In the realm of data manipulation, it is often necessary to impute missing values to ensure data integrity. Pandas, a versatile data analysis library, provides the fillna() method to efficiently handle this task. However, extending its functionality to fill missing values with an entire column requires a specific approach.
Previous attempts to fill missing values in one column with corresponding values from another column often involved inefficient row-by-row looping. To optimize performance and adhere to best practices, an alternative method leveraging fillna() is essential.
Here's how to effectively pass an entire column as an argument to fillna():
import pandas as pd # Create a DataFrame with missing values df = pd.DataFrame({'Day': [1, 2, 3, 4], 'Cat1': ['cat', 'dog', 'cat', np.nan], 'Cat2': ['mouse', 'elephant', 'giraf', 'ant']}) # Fill missing values in Cat1 using values from Cat2 df['Cat1'].fillna(df['Cat2'], inplace=True) # Display the imputed DataFrame print(df)
This code successfully fills the missing value in 'Cat1' on the fourth row with 'ant,' extracted from the corresponding row in 'Cat2.' The resulting DataFrame exhibits complete data, ensuring its validity for subsequent analysis.
By leveraging fillna()'s ability to accept column arguments, you can efficiently impute missing values with data from another column in a single operation. This approach not only enhances data quality but also optimizes computational efficiency, making it an indispensable tool in your data wrangling toolbox.
The above is the detailed content of How can I Fill Missing Values in One Column with Data From Another Column in Pandas?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
