Why Delete Does Not Automatically Set Pointer to NULL
Despite its potential benefits in preventing invalid pointer-related crashes, the C standard does not mandate that the delete operator automatically sets the pointer to NULL after deallocating memory. The reasons for this decision are multifaceted.
Performance
Adding an instruction to set the pointer to NULL could potentially slow down the performance of the delete operation. While this may be negligible for most applications, it could impact performance-critical systems.
Constants
Const pointers present a potential challenge. Setting a const pointer to NULL would violate its immutability, leading to undefined behavior. However, the standard could have provided a special case for const pointers, allowing them to be set to NULL.
Argument Flexibility
The standard explicitly permits delete's argument to be an rvalue, not just an lvalue. For example, deleting an array involves specifying the array name as an argument: delete [] array;. In such cases, it is not possible to set the pointer to NULL since it does not point to a valid memory location after deletion.
Other Considerations
Bjarne Stroustrup, the creator of C , acknowledges the potential benefits of automatic NULL-setting during deletion but notes that implementers have not widely adopted this practice. He also emphasizes the need for programmers to be vigilant about ensuring that pointers are properly handled after deallocation.
In summary, while automatic NULL-setting by delete would have benefits, the C standard opted not to mandate it due to performance concerns, the need to accommodate certain cases, and the importance of programmer responsibility in managing pointers.
The above is the detailed content of Why Doesn't `delete` Automatically Set the Pointer to NULL in C ?. For more information, please follow other related articles on the PHP Chinese website!

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.

C still dominates performance optimization because its low-level memory management and efficient execution capabilities make it indispensable in game development, financial transaction systems and embedded systems. Specifically, it is manifested as: 1) In game development, C's low-level memory management and efficient execution capabilities make it the preferred language for game engine development; 2) In financial transaction systems, C's performance advantages ensure extremely low latency and high throughput; 3) In embedded systems, C's low-level memory management and efficient execution capabilities make it very popular in resource-constrained environments.

The choice of C XML framework should be based on project requirements. 1) TinyXML is suitable for resource-constrained environments, 2) pugixml is suitable for high-performance requirements, 3) Xerces-C supports complex XMLSchema verification, and performance, ease of use and licenses must be considered when choosing.

C# is suitable for projects that require development efficiency and type safety, while C is suitable for projects that require high performance and hardware control. 1) C# provides garbage collection and LINQ, suitable for enterprise applications and Windows development. 2)C is known for its high performance and underlying control, and is widely used in gaming and system programming.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Atom editor mac version download
The most popular open source editor
