Home >Backend Development >Python Tutorial >Unflatten in PyTorch

Unflatten in PyTorch

Linda Hamilton
Linda HamiltonOriginal
2024-11-06 14:38:02721browse

Unflatten in PyTorch

Buy Me a Coffee☕

*Memos:

  • My post explains unflatten().
  • My post explains flatten() and ravel().
  • My post explains Flatten().

Unflatten() can add zero or more dimensions to the 1D or more D tensor of zero or more elements, getting the 1D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is dim(Required-Type:int).
  • The 2nd argument for initialization is unflattened_size(Required-Type:tuple or list of int).
  • The 1st argument is input(Required-Type:tensor of int, float, complex or bool). *-1 infers and adjust the size.
  • The difference between Unflatten() and unflatten() is:
    • Unflatten() has unflattened_size argument which is identical to sizes argument of unflatten().
    • Basically, Unflatten() is used to define a model while unflatten() is not used to define a model.
import torch
from torch import nn

unflatten = nn.Unflatten()
unflatten
# Unflatten(dim=0, unflattened_size=(6,))

unflatten.dim
# 0

unflatten.unflattened_size
# (6,)

my_tensor = torch.tensor([7, 1, -8, 3, -6, 0])

unflatten = nn.Unflatten(dim=0, unflattened_size=(6,))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,))
unflatten(input=my_tensor)
# tensor([7, 1, -8, 3, -6, 0])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 6))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 6))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 6))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 6))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1))
unflatten(input=my_tensor)
# tensor([[7, 1, -8, 3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, -1))
unflatten(input=my_tensor)
# tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(3, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(3, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 2))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1))
unflatten(input=my_tensor)
# tensor([[7, 1], [-8, 3], [-6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(6, 1))
unflatten = nn.Unflatten(dim=0, unflattened_size=(6, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, 1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, -1))
unflatten(input=my_tensor)
# tensor([[7], [1], [-8], [3], [-6], [0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, -1))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8], [3, -6, 0]]])
etc

my_tensor = torch.tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=1, unflattened_size=(3,))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2,))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1,))
unflatten(input=my_tensor)
# tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 2))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8], [3, -6, 0]]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 1))
unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 3))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, 1))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, -1))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8]], [[3, -6, 0]]])

unflatten = nn.Unflatten(dim=1, unflattened_size=(3, 1))
unflatten = nn.Unflatten(dim=1, unflattened_size=(3, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1))
unflatten(input=my_tensor)
# tensor([[[7], [1], [-8]], [[3], [-6], [0]]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, -1))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, -1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, -1))
unflatten(input=my_tensor)
# tensor([[[[7, 1, -8], [3, -6, 0]]]])

unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, -1))
unflatten(input=my_tensor)
# tensor([[[[7, 1, -8]]], [[[3, -6, 0]]]])

my_tensor = torch.tensor([[7., 1., -8.], [3., -6., 0.]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[7., 1., -8.], [3., -6., 0.]])

my_tensor = torch.tensor([[7.+0.j, 1.+0.j, -8.+0.j],
                          [3.+0.j, -6.+0.j, 0.+0.j]])
unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[7.+0.j, 1.+0.j, -8.+0.j],
#         [3.+0.j, -6.+0.j, 0.+0.j]])

my_tensor = torch.tensor([[True, False, True], [False, True, False]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[True, False, True], [False, True, False]])

The above is the detailed content of Unflatten in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn