


Returning a Named Object by Value from a Function and Implied Move Rule
Consider a situation where an object of a generic class is returned by value from a function. In Example 1:
<code class="cpp">class test { public: test() { printf(" test()\n"); } test(test&& s) { printf(" test(test&& s)\n"); } test& operator=(test e) { printf(" test& operator=( test e)\n"); return *this; } }; test Some_thing() { test i; return i; }</code>
The output is:
test() test(test&& s)
In this example, the constructor test() is called for the LValue object i created in the function, and the move constructor test(test&& s) is called when the object i is returned by value, since the expression return i is an rvalue reference.
In Example 2, the copy constructor test(test& z) is provided, but the move constructor is not synthesized by the compiler:
<code class="cpp">class test { public: test() { printf(" test()\n"); } test(test& z) { printf(" test(test& z)\n"); } test& operator=(test e) { printf(" test& operator=( test e)\n"); return *this; } }; test Some_thing() { test i; return i; }</code>
The output remains the same as in Example 1:
test() test(test& z)
The copy constructor is used because there is no available move constructor.
In Example 3, the move constructor is explicitly deleted:
<code class="cpp">class test { public: test(test&& z) = delete; // Deleted move constructor test() { printf(" test()\n"); } test(test& z) { printf(" test(test& z)\n"); } test& operator=(test e) { printf(" test& operator=( test e)\n"); return *this; } }; test Some_thing() { test i; return i; }</code>
Trying to compile this code will result in an error, as the deleted move constructor means that no move operation can be performed.
In Example 4, even though the move constructor is deleted, the code compiles and runs:
<code class="cpp">class test { public: test(test&& z) = delete; test() { printf(" test()\n"); } test(test& z) { printf(" test(test& z)\n"); } test& operator=(test e) { printf(" test& operator=( test e)\n"); return *this; } }; int main() { test u; test r(u); // Copy constructor is used return 0; }</code>
Output:
test() test(test& z)
In this example, r(u) creates a new object r by copying the object u. The move constructor is not used because it's deleted, and the copy constructor is used instead.
The key takeaway is that whether the move constructor is used or not depends on the availability of a viable move constructor and the rules for overload resolution. If the move constructor is available and viable, it may be used for initializing the returned value from a function, even if the expression used to return the value is an LValue.
The above is the detailed content of When is the Move Constructor Used for Returning Named Objects by Value in C ?. For more information, please follow other related articles on the PHP Chinese website!

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 English version
Recommended: Win version, supports code prompts!
