search
HomeBackend DevelopmentC++How to Remove a Friend Declaration Without Compromising Design?

How to Remove a Friend Declaration Without Compromising Design?

How to Remove a Friend Declaration While Preserving Design

The usage of the "friend" keyword in object-oriented design can create tight dependencies and hinder maintainability. This article provides a comprehensive approach to remove a friend declaration while preserving the overall design of the system.

Problem Background:

Consider a scenario where two classes, ClassA and ClassAAccessor, have a friend relationship. ClassA represents a shared resource with protected methods, while ClassAAccessor serves as a helper to manage access to this resource. The friend relationship between ClassA and ClassAAccessor allows ClassAAccessor to directly access the protected methods of ClassA.

Design Constraints:

To ensure proper refactoring, several constraints are set:

  • The public interface of ClassAAccessor should remain unchanged.
  • Internal operations of ClassA should remain private.
  • Performance and memory consumption should not be significantly impacted.

Refactoring Steps:

Step 1: Introduce an Abstract Interface

Extract the operations that were previously accessible via the friend relationship into a separate interface called InternalInterface. Refactor the relationship between ClassA and ClassAAccessor to make it dependent on this interface rather than using the friend keyword.

Step 2: Move Operations to Interface

Move the operations from ClassA to the InternalInterface. This eliminates the "call" dependency from ClassAAccessor directly to ClassA.

Step 3: Glue Implementation Together

Create a private member variable in ClassAAccessor that points to an instance of InternalInterface. Introduce a method in ClassA that allows setting this member variable to enable ClassAAccessor to access the required internal operations.

Implementation Example:

<code class="cpp">class ClassAAccessor {
public:
    ClassAAccessor(ClassA& classA);
    void setInternalInterfaceRef(InternalInterface & newValue) {
        internalInterfaceRef = &newValue;
    }
private:  
    InternalInterface* internalInterfaceRef;
};

class ClassA : protected InternalInterface {
public:
    attachAccessor(ClassAAccessor & accessor);
};</code>

Advantages of Refactoring:

  • Eliminates tight dependency between ClassA and ClassAAccessor.
  • Ensures private access to internal operations of ClassA.
  • Provides a more modular and maintainable design.

Disadvantages of Refactoring:

  • Increased complexity in code structure.
  • Potential for slightly increased memory consumption due to the introduction of additional interfaces.
  • Limited UML support for protected generalization relationships.

The above is the detailed content of How to Remove a Friend Declaration Without Compromising Design?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What are the types of values ​​returned by c language functions? What determines the return value?What are the types of values ​​returned by c language functions? What determines the return value?Mar 03, 2025 pm 05:52 PM

This article details C function return types, encompassing basic (int, float, char, etc.), derived (arrays, pointers, structs), and void types. The compiler determines the return type via the function declaration and the return statement, enforcing

Gulc: C library built from scratchGulc: C library built from scratchMar 03, 2025 pm 05:46 PM

Gulc is a high-performance C library prioritizing minimal overhead, aggressive inlining, and compiler optimization. Ideal for performance-critical applications like high-frequency trading and embedded systems, its design emphasizes simplicity, modul

What are the definitions and calling rules of c language functions and what are theWhat are the definitions and calling rules of c language functions and what are theMar 03, 2025 pm 05:53 PM

This article explains C function declaration vs. definition, argument passing (by value and by pointer), return values, and common pitfalls like memory leaks and type mismatches. It emphasizes the importance of declarations for modularity and provi

C language function format letter case conversion stepsC language function format letter case conversion stepsMar 03, 2025 pm 05:53 PM

This article details C functions for string case conversion. It explains using toupper() and tolower() from ctype.h, iterating through strings, and handling null terminators. Common pitfalls like forgetting ctype.h and modifying string literals are

Where is the return value of the c language function stored in memory?Where is the return value of the c language function stored in memory?Mar 03, 2025 pm 05:51 PM

This article examines C function return value storage. Small return values are typically stored in registers for speed; larger values may use pointers to memory (stack or heap), impacting lifetime and requiring manual memory management. Directly acc

distinct usage and phrase sharingdistinct usage and phrase sharingMar 03, 2025 pm 05:51 PM

This article analyzes the multifaceted uses of the adjective "distinct," exploring its grammatical functions, common phrases (e.g., "distinct from," "distinctly different"), and nuanced application in formal vs. informal

How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?Mar 12, 2025 pm 04:52 PM

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

How does the C   Standard Template Library (STL) work?How does the C Standard Template Library (STL) work?Mar 12, 2025 pm 04:50 PM

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software