Home  >  Article  >  Backend Development  >  How to Convert a Pandas DataFrame with Missing Values to a NumPy Array?

How to Convert a Pandas DataFrame with Missing Values to a NumPy Array?

Linda Hamilton
Linda HamiltonOriginal
2024-11-04 12:17:29496browse

How to Convert a Pandas DataFrame with Missing Values to a NumPy Array?

Convert Pandas DataFrame with Missing Values to NumPy Array

Converting a Pandas DataFrame containing missing values to a NumPy array is a common task in data analysis. The desired output is to have np.nan represent missing values.

Using df.to_numpy()

The recommended method for this conversion is to use the df.to_numpy() method:

<code class="python">import numpy as np
import pandas as pd

# Create a DataFrame with missing values
index = [1, 2, 3, 4, 5, 6, 7]
a = [np.nan, np.nan, np.nan, 0.1, 0.1, 0.1, 0.1]
b = [0.2, np.nan, 0.2, 0.2, 0.2, np.nan, np.nan]
c = [np.nan, 0.5, 0.5, np.nan, 0.5, 0.5, np.nan]
df = pd.DataFrame({'A': a, 'B': b, 'C': c}, index=index)

# Convert to NumPy array
np_array = df.to_numpy()
print(np_array)</code>

This will output:

<code class="python">array([[ nan,  0.2,  nan],
       [ nan,  nan,  0.5],
       [ nan,  0.2,  0.5],
       [ 0.1,  0.2,  nan],
       [ 0.1,  0.2,  0.5],
       [ 0.1,  nan,  0.5],
       [ 0.1,  nan,  nan]])</code>

Preserving Data Types

To preserve the data types in the output NumPy array, you can use the df.to_records() method:

<code class="python">records = df.to_records()
print(records.dtype)</code>

This will output:

<code class="python">[('index', 'O'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')]</code>

where O represents object type (index), and f8 represents float64 type (the values).

Using np.rec.fromrecords, you can convert the records to a structured NumPy array:

<code class="python">import numpy as np

np_array = np.rec.fromrecords(records, names=df.columns)
print(np_array.dtype)</code>

This will output the same data types as the records.

The above is the detailed content of How to Convert a Pandas DataFrame with Missing Values to a NumPy Array?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn