Spurious Wakeups in Java: Reality or Myth?
The concept of spurious wakeups in Java synchronization has been a subject of discussion for quite some time. While the potential for such behavior exists, the question remains: Do they actually occur in practice?
Linux's Wakeup Mechanism
According to the Wikipedia article on spurious wakeups, the Linux implementation of the pthread_cond_wait() function utilizes the futex system call. When a process receives a signal, it may return abruptly with EINTR, causing its blocking system calls to terminate early.
Futex and Spurious Wakeups
This race condition arises because pthread_cond_wait() cannot resume the waiting thread if it has missed a real wakeup while executing outside the futex system call. As a result, a POSIX signal can trigger a spurious wakeup.
Example in Java
The provided Java program demonstrates the concept:
<code class="java">public class Spurious { public static void main(String[] args) { Lock lock = new ReentrantLock(); Condition cond = lock.newCondition(); lock.lock(); try { try { cond.await(); System.out.println("Spurious wakeup!"); } catch (InterruptedException ex) { System.out.println("Just a regular interrupt."); } } finally { lock.unlock(); } } }</code>
Provoking Spurious Wakeups
To induce a spurious wakeup in this Java program, a signal can be sent to the process while it is waiting on the condition. This can be achieved on Linux using a command like:
<code class="bash">kill -s SIGUSR1 <pid of java process></pid></code>
Performance Benefits
While spurious wakeups can be considered an annoyance in some scenarios, their occurrence is generally rare in modern operating systems. They do, however, play a role in the performance optimization of the system by preventing unnecessary busy waiting and reducing overhead when dealing with multiple threads waiting on the same condition variable.
The above is the detailed content of Do Spurious Wakeups in Java Really Occur?. For more information, please follow other related articles on the PHP Chinese website!

JVM'sperformanceiscompetitivewithotherruntimes,offeringabalanceofspeed,safety,andproductivity.1)JVMusesJITcompilationfordynamicoptimizations.2)C offersnativeperformancebutlacksJVM'ssafetyfeatures.3)Pythonisslowerbuteasiertouse.4)JavaScript'sJITisles

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunonanyplatformwithaJVM.1)Codeiscompiledintobytecode,notmachine-specificcode.2)BytecodeisinterpretedbytheJVM,enablingcross-platformexecution.3)Developersshouldtestacross

TheJVMisanabstractcomputingmachinecrucialforrunningJavaprogramsduetoitsplatform-independentarchitecture.Itincludes:1)ClassLoaderforloadingclasses,2)RuntimeDataAreafordatastorage,3)ExecutionEnginewithInterpreter,JITCompiler,andGarbageCollectorforbytec

JVMhasacloserelationshipwiththeOSasittranslatesJavabytecodeintomachine-specificinstructions,managesmemory,andhandlesgarbagecollection.ThisrelationshipallowsJavatorunonvariousOSenvironments,butitalsopresentschallengeslikedifferentJVMbehaviorsandOS-spe

Java implementation "write once, run everywhere" is compiled into bytecode and run on a Java virtual machine (JVM). 1) Write Java code and compile it into bytecode. 2) Bytecode runs on any platform with JVM installed. 3) Use Java native interface (JNI) to handle platform-specific functions. Despite challenges such as JVM consistency and the use of platform-specific libraries, WORA greatly improves development efficiency and deployment flexibility.

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunondifferentoperatingsystemswithoutmodification.TheJVMcompilesJavacodeintoplatform-independentbytecode,whichittheninterpretsandexecutesonthespecificOS,abstractingawayOS

Javaispowerfulduetoitsplatformindependence,object-orientednature,richstandardlibrary,performancecapabilities,andstrongsecurityfeatures.1)PlatformindependenceallowsapplicationstorunonanydevicesupportingJava.2)Object-orientedprogrammingpromotesmodulara

The top Java functions include: 1) object-oriented programming, supporting polymorphism, improving code flexibility and maintainability; 2) exception handling mechanism, improving code robustness through try-catch-finally blocks; 3) garbage collection, simplifying memory management; 4) generics, enhancing type safety; 5) ambda expressions and functional programming to make the code more concise and expressive; 6) rich standard libraries, providing optimized data structures and algorithms.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Zend Studio 13.0.1
Powerful PHP integrated development environment

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
