Adding Seconds to datetime.time in Python
Unlike basic arithmetic operations, adding seconds to a datetime.time object requires a more nuanced approach. This is because datetime.time doesn't support direct addition of integers.
Standard Method via datetime Conversion:
The preferred method involves converting datetime.time to a full datetime object, adding seconds using datetime.timedelta, and then extracting the time value:
<code class="python">import datetime a = datetime.datetime(100, 1, 1, 11, 34, 59) b = a + datetime.timedelta(seconds=3) # Days, seconds, then other fields print(a.time()) print(b.time())</code>
Custom Function using timedelta:
Alternatively, you can create a custom function like addSecs:
<code class="python">import datetime def addSecs(tm, secs): fulldate = datetime.datetime(100, 1, 1, tm.hour, tm.minute, tm.second) fulldate = fulldate + datetime.timedelta(seconds=secs) return fulldate.time()</code>
Example usage:
<code class="python">a = datetime.datetime.now().time() b = addSecs(a, 300) print(a) print(b)</code>
The above is the detailed content of How do I add seconds to a `datetime.time` object in Python?. For more information, please follow other related articles on the PHP Chinese website!

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.