NaN vs None: A Dilemma in Missing Data Representation
One often encounters instances where CSV columns containing a mix of numbers and letters include empty cells. Assigning None to such cells might seem intuitive, representing their null value. However, pandas readcsv() instead assigns nan, leading to confusion about the difference between the two.
Delving into Nan
NaN, short for "Not-a-Number," is a placeholder value used consistently across pandas to represent missing data. This approach ensures consistency, with NaN effectively serving as a "missing" marker.
The fundamental reason for using NaN over None lies in its ability to be stored with NumPy's float64 dtype. Object dtype, which is necessary for storing None, is less efficient. This distinction is evident in vectorized operations, where NaN enables efficient computation, while None forces object type, hindering efficiency.
Clarifying the NaN Assignment
pandas readcsv() assigns NaN to empty cells to maintain consistency throughout the dataset. This is particularly important when working with data analysis libraries that rely on NaN for identifying missing data.
Detecting Empty Cells
To test for empty cells, one should use the isna and notna functions provided by pandas. These functions are specifically designed for detecting NaN values, ensuring accuracy and compatibility with the pandas ecosystem.
Conclusion
The use of NaN in pandas is a result of its versatility and efficiency. Although the choice to favor NaN over None might not align with intuitive reasoning, it ensures consistency and allows for optimized operations. Understanding the distinctions between NaN and None is crucial for effective data analysis with pandas.
The above is the detailed content of Why does pandas use NaN instead of None for missing data?. For more information, please follow other related articles on the PHP Chinese website!

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 English version
Recommended: Win version, supports code prompts!

Zend Studio 13.0.1
Powerful PHP integrated development environment