Introduction
Hey dev community! ? I'm excited to share the journey of building ErgoVision, an AI-powered system that's making workplaces safer through real-time posture analysis. Let's dive into the technical challenges and solutions!
The Challenge
When SIIR-Lab at Texas A&M University approached me about building a real-time posture analysis system, we faced several key challenges:
- Real-time processing requirements
- Accurate pose estimation
- Professional safety standards
- Scalable implementation
Technical Stack
# Core dependencies import mediapipe as mp import cv2 import numpy as np
Why This Stack?
- MediaPipe: Robust pose detection
- OpenCV: Efficient video processing
- NumPy: Fast mathematical computations
Key Implementation Challenges
1. Real-time Processing
The biggest challenge was achieving real-time analysis. Here's how we solved it:
def process_frame(self, frame): # Convert to RGB for MediaPipe rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = self.pose.process(rgb_frame) if results.pose_landmarks: # Process landmarks self.analyze_pose(results.pose_landmarks) return results
2. Accurate Angle Calculation
def calculate_angle(self, a, b, c): vector1 = np.array([a[0] - b[0], a[1] - b[1], a[2] - b[2]]) vector2 = np.array([c[0] - b[0], c[1] - b[1], c[2] - b[2]]) # Handle edge cases if np.linalg.norm(vector1) == 0 or np.linalg.norm(vector2) == 0: return 0.0 cosine_angle = np.dot(vector1, vector2) / ( np.linalg.norm(vector1) * np.linalg.norm(vector2) ) return np.degrees(np.arccos(np.clip(cosine_angle, -1.0, 1.0)))
3. REBA Score Implementation
def calculate_reba_score(self, angles): # Initialize scores neck_score = self._get_neck_score(angles['neck']) trunk_score = self._get_trunk_score(angles['trunk']) legs_score = self._get_legs_score(angles['legs']) # Calculate final score return neck_score + trunk_score + legs_score
Lessons Learned
- Performance Optimization
- Use NumPy for vector calculations
- Implement efficient angle calculations
Optimize frame processing
Error Handling
def safe_angle_calculation(self, landmarks): try: angles = self.calculate_angles(landmarks) return angles except Exception as e: self.log_error(e) return self.default_angles
- Testing Strategy
- Unit tests for calculations
- Integration tests for video processing
- Performance benchmarking
Results
Our implementation achieved:
- 30 FPS processing
- 95% pose detection accuracy
- Real-time REBA scoring
- Comprehensive safety alerts
Code Repository Structure
ergovision/ ├── src/ │ ├── analyzer.py │ ├── pose_detector.py │ └── reba_calculator.py ├── tests/ │ └── test_analyzer.py └── README.md
Future Improvements
- Performance Enhancements
# Planned optimization @numba.jit(nopython=True) def optimized_angle_calculation(self, vectors): # Optimized computation pass
- Feature Additions
- Multi-camera support
- Cloud integration
- Mobile apps
Get Involved!
- Star our repository
- Try the implementation
- Contribute to development
- Share your feedback
Resources
- GitHub Repository
Happy coding! ?
The above is the detailed content of Building ErgoVision: A Developers Journey in AI Safety. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment