


How Can You Calculate Cosine Similarity Between Two Sentences Without External Libraries?
Calculating Cosine Similarity Between Two Sentence Strings Without External Libraries
In the context of natural language processing, calculating cosine similarity is essential for measuring the textual similarity between documents. While external libraries like tf-idf-cosine can facilitate this task, it's also possible to compute cosine similarity manually without relying on such dependencies.
Cosine Similarity Overview
Cosine similarity quantifies the angle between two vectors representing the texts. A higher cosine similarity indicates a smaller angle, implying a greater similarity between the texts. It is calculated using the dot product of the normalized vectors divided by their magnitudes.
Implementing Cosine Similarity Manually
To calculate cosine similarity manually, we define the following steps:
- Tokenization: Split the sentences into individual words.
- Vectorization: Create a counter for each word in each sentence, which represents its frequency (term frequency).
- Normalization: Normalize the vectors by dividing each element by the square root of the sum of its elements' squares (L2 norm).
- Cosine Calculation: Compute the dot product of the normalized vectors and divide it by their magnitudes.
Code Implementation
Below is a Python implementation of the manual cosine similarity calculation:
<code class="python">import math import re from collections import Counter WORD = re.compile(r"\w+") def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x] ** 2 for x in vec1]) sum2 = sum([vec2[x] ** 2 for x in vec2]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return numerator / denominator def text_to_vector(text): words = WORD.findall(text) return Counter(words) text1 = "This is a foo bar sentence ." text2 = "This sentence is similar to a foo bar sentence ." vector1 = text_to_vector(text1) vector2 = text_to_vector(text2) cosine = get_cosine(vector1, vector2) print("Cosine:", cosine)</code>
Result
This code executes as follows:
Cosine: 0.861640436855
This value indicates a high cosine similarity between the two sentences, confirming that they are textually similar.
Further Considerations
While this manual approach provides a basic implementation, it can be enhanced by:
- Incorporating stemming or lemmatization for improved word normalization.
- Implementing a more sophisticated tokenization scheme.
- Adding weightings like TF-IDF for more accurate similarity calculations.
The above is the detailed content of How Can You Calculate Cosine Similarity Between Two Sentences Without External Libraries?. For more information, please follow other related articles on the PHP Chinese website!

Article discusses impossibility of tuple comprehension in Python due to syntax ambiguity. Alternatives like using tuple() with generator expressions are suggested for creating tuples efficiently.(159 characters)

The article explains modules and packages in Python, their differences, and usage. Modules are single files, while packages are directories with an __init__.py file, organizing related modules hierarchically.

Article discusses docstrings in Python, their usage, and benefits. Main issue: importance of docstrings for code documentation and accessibility.

Article discusses lambda functions, their differences from regular functions, and their utility in programming scenarios. Not all languages support them.

Article discusses break, continue, and pass in Python, explaining their roles in controlling loop execution and program flow.

The article discusses the 'pass' statement in Python, a null operation used as a placeholder in code structures like functions and classes, allowing for future implementation without syntax errors.

Article discusses passing functions as arguments in Python, highlighting benefits like modularity and use cases such as sorting and decorators.

Article discusses / and // operators in Python: / for true division, // for floor division. Main issue is understanding their differences and use cases.Character count: 158


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Zend Studio 13.0.1
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version
Recommended: Win version, supports code prompts!
