Dropping Specific Rows from a Pandas Dataframe
When working with a Pandas dataframe, it often becomes necessary to remove certain rows based on specific criteria. One common requirement is to drop rows that correspond to a list of sequential numbers. This article tackles this problem and presents a comprehensive solution.
In the example provided, we have a dataframe called 'df' with the following data:
sales discount net_sales cogs STK_ID RPT_Date 600141 20060331 2.709 NaN 2.709 2.245 20060630 6.590 NaN 6.590 5.291 20060930 10.103 NaN 10.103 7.981 20061231 15.915 NaN 15.915 12.686 20070331 3.196 NaN 3.196 2.710 20070630 7.907 NaN 7.907 6.459
Suppose we want to drop rows 1, 2, and 4 from this dataframe. To achieve this, we can utilize the 'DataFrame.drop' method. This method takes a 'Series' object as an argument, which contains the index labels of the rows we want to remove.
The following code snippet illustrates how to drop rows 1, 2, and 4 from our dataframe:
drop_list = [1, 2, 4] df.drop(index=drop_list, inplace=True)
Here, we create a list called 'drop_list' containing the index labels of the rows to be dropped. We then pass this list to the 'DataFrame.drop' method, specifying the 'index' parameter to indicate that we want to drop rows. Finally, the 'inplace=True' argument ensures that the dataframe is modified in place, without the need to assign it to a new variable.
After executing the above code, our dataframe will be updated as follows:
sales discount net_sales cogs STK_ID RPT_Date 600141 20060331 2.709 NaN 2.709 2.245 20061231 15.915 NaN 15.915 12.686 20070630 7.907 NaN 7.907 6.459
As you can see, rows 1, 2, and 4 have been successfully removed from the dataframe. This method is highly effective for dropping specific rows based on index labels or other criteria and can be easily customized to meet your specific data manipulation requirements.
The above is the detailed content of How to Drop Specific Rows from a Pandas Dataframe?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version
God-level code editing software (SublimeText3)
