


How can I calculate cosine similarity between two sentences without using external libraries?
Calculating Cosine Similarity for Sentence Strings
Cosine similarity is a measure of the correlation between two vectors. In the context of text processing, it can be used to determine the similarity between two sentences. To calculate cosine similarity for two strings without external libraries, follow these steps:
- Tokenize the strings: Break each string into individual words, known as tokens.
- Create word vectors: For each string, create a dictionary (vector) where the keys are unique words, and the values are the frequencies of those words.
- Calculate dot product: Compute the dot product of the two vectors by summing the products of corresponding elements.
- Calculate magnitudes: Find the magnitude of each vector by squaring and summing all its elements, then taking the square root.
- Normalize: Divide the dot product by the product of the magnitudes to obtain the normalized cosine similarity.
A simple Python implementation:
<code class="python">import math import re from collections import Counter WORD = re.compile(r"\w+") def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x] ** 2 for x in list(vec1.keys())]) sum2 = sum([vec2[x] ** 2 for x in list(vec2.keys())]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator def text_to_vector(text): words = WORD.findall(text) return Counter(words)</code>
Example usage:
<code class="python">text1 = "This is a foo bar sentence ." text2 = "This sentence is similar to a foo bar sentence ." vector1 = text_to_vector(text1) vector2 = text_to_vector(text2) cosine = get_cosine(vector1, vector2) print("Cosine:", cosine)</code>
Output:
Cosine: 0.861640436855
Note that this implementation does not include TF-IDF weighting, which can improve the accuracy of cosine similarity for larger datasets.
The above is the detailed content of How can I calculate cosine similarity between two sentences without using external libraries?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

Dreamweaver CS6
Visual web development tools
