


How to Serialize a List of Polymorphic Objects with Gson Using RuntimeTypeAdapterFactory?
How to Serialize a List of Polymorphic Objects with Gson
When dealing with polymorphic objects during serialization, inheritance and class hierarchy can pose challenges. One method to address this elegantly is through Gson's RuntimeTypeAdapterFactory.
Let's consider an example where we have a base class, ObixBaseObj, and a child class, ObixOp. Our goal is to serialize an instance of ObixBaseObj that contains a collection of children, including ObixOp.
In the first code snippet, we encounter an issue where inherited members (specifically, in and out strings) are missing during serialization. The solution lies in using RuntimeTypeAdapterFactory:
<code class="java">RuntimeTypeAdapterFactory<obixbaseobj> adapter = RuntimeTypeAdapterFactory .of(ObixBaseObj.class) .registerSubtype(ObixBaseObj.class) .registerSubtype(ObixOp.class); Gson gson2=new GsonBuilder().setPrettyPrinting().registerTypeAdapterFactory(adapter).create(); System.out.println(gson2.toJson(lobbyObj));</obixbaseobj></code>
Working Example
For a scenario where multiple subclasses inherit from ObixBaseObj, we can implement a custom registration mechanism within ObixBaseObj and utilize a utility class, GsonUtils:
<code class="java">public class ObixBaseObj { // ... private static final RuntimeTypeAdapterFactory<obixbaseobj> adapter = RuntimeTypeAdapterFactory.of(ObixBaseObj.class); public static void registerType( RuntimeTypeAdapterFactory> adapter) { GsonUtils.registerType(adapter); } // ... } public class ObixOp extends ObixBaseObj { // ... public ObixOp() { super(); obix = "op"; } // ... }</obixbaseobj></code>
In GsonUtils:
<code class="java">public class GsonUtils { private static final GsonBuilder gsonBuilder = new GsonBuilder() .setPrettyPrinting(); public static void registerType( RuntimeTypeAdapterFactory> adapter) { gsonBuilder.registerTypeAdapterFactory(adapter); } public static Gson getGson() { return gsonBuilder.create(); } }</code>
<code class="java">ObixBaseObj lobbyObj = new ObixBaseObj(); lobbyObj.setIs("obix:Lobby"); ObixOp batchOp = new ObixOp(); batchOp.setName("batch"); batchOp.setIn("obix:BatchIn"); batchOp.setOut("obix:BatchOut"); lobbyObj.addChild(batchOp); Gson gson = GsonUtils.getGson(); System.out.println(gson.toJson(lobbyObj));</code>
This approach simplifies the serialization of polymorphic objects by automatically registering subclasses and ensuring that inherited members are included in the serialized output.
The above is the detailed content of How to Serialize a List of Polymorphic Objects with Gson Using RuntimeTypeAdapterFactory?. For more information, please follow other related articles on the PHP Chinese website!

Java is widely used in enterprise-level applications because of its platform independence. 1) Platform independence is implemented through Java virtual machine (JVM), so that the code can run on any platform that supports Java. 2) It simplifies cross-platform deployment and development processes, providing greater flexibility and scalability. 3) However, it is necessary to pay attention to performance differences and third-party library compatibility and adopt best practices such as using pure Java code and cross-platform testing.

JavaplaysasignificantroleinIoTduetoitsplatformindependence.1)Itallowscodetobewrittenonceandrunonvariousdevices.2)Java'secosystemprovidesusefullibrariesforIoT.3)ItssecurityfeaturesenhanceIoTsystemsafety.However,developersmustaddressmemoryandstartuptim

ThesolutiontohandlefilepathsacrossWindowsandLinuxinJavaistousePaths.get()fromthejava.nio.filepackage.1)UsePaths.get()withSystem.getProperty("user.dir")andtherelativepathtoconstructthefilepath.2)ConverttheresultingPathobjecttoaFileobjectifne

Java'splatformindependenceissignificantbecauseitallowsdeveloperstowritecodeonceandrunitonanyplatformwithaJVM.This"writeonce,runanywhere"(WORA)approachoffers:1)Cross-platformcompatibility,enablingdeploymentacrossdifferentOSwithoutissues;2)Re

Java is suitable for developing cross-server web applications. 1) Java's "write once, run everywhere" philosophy makes its code run on any platform that supports JVM. 2) Java has a rich ecosystem, including tools such as Spring and Hibernate, to simplify the development process. 3) Java performs excellently in performance and security, providing efficient memory management and strong security guarantees.

JVM implements the WORA features of Java through bytecode interpretation, platform-independent APIs and dynamic class loading: 1. Bytecode is interpreted as machine code to ensure cross-platform operation; 2. Standard API abstract operating system differences; 3. Classes are loaded dynamically at runtime to ensure consistency.

The latest version of Java effectively solves platform-specific problems through JVM optimization, standard library improvements and third-party library support. 1) JVM optimization, such as Java11's ZGC improves garbage collection performance. 2) Standard library improvements, such as Java9's module system reducing platform-related problems. 3) Third-party libraries provide platform-optimized versions, such as OpenCV.

The JVM's bytecode verification process includes four key steps: 1) Check whether the class file format complies with the specifications, 2) Verify the validity and correctness of the bytecode instructions, 3) Perform data flow analysis to ensure type safety, and 4) Balancing the thoroughness and performance of verification. Through these steps, the JVM ensures that only secure, correct bytecode is executed, thereby protecting the integrity and security of the program.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools
