


Adding Labels to the Legend in Plots with Secondary Axes Using twinx()
Having multiple axes in a single plot can be useful for visualizing data from different sources or with different units. When using the twinx() function to create a secondary axis, it may be necessary to add labels to the lines plotted on the secondary axis and include them in the legend.
To accomplish this, you can either add a separate legend for the secondary axis using ax2.legend(loc=0). However, this approach results in two separate legends.
For a more cohesive display, all labels can be added to a single legend using the following steps:
- Create a list of line objects representing all lines plotted on both axes.
- Create a list of labels corresponding to the line objects.
- Use the legend function to add the lines and labels to the legend, passing the loc parameter to specify the legend's location.
<code class="python">import numpy as np import matplotlib.pyplot as plt from matplotlib import rc time = np.arange(10) temp = np.random.random(10)*30 Swdown = np.random.random(10)*100-10 Rn = np.random.random(10)*100-10 fig = plt.figure() ax = fig.add_subplot(111) lns1 = ax.plot(time, Swdown, '-', label = 'Swdown') lns2 = ax.plot(time, Rn, '-', label = 'Rn') ax2 = ax.twinx() lns3 = ax2.plot(time, temp, '-r', label = 'temp') # Add all lines and labels to a single legend lns = lns1+lns2+lns3 labs = [l.get_label() for l in lns] ax.legend(lns, labs, loc=0) ax.grid() ax.set_xlabel("Time (h)") ax.set_ylabel(r"Radiation ($MJ\,m^{-2}\,d^{-1}$)") ax2.set_ylabel(r"Temperature ($^\circ$C)") ax2.set_ylim(0, 35) ax.set_ylim(-20,100) plt.show()</code>
This code will produce a single legend that includes all the labels from the primary and secondary axes.
The above is the detailed content of How to Add Labels to the Legend in Plots with Secondary Axes Using twinx()?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor
