Home > Article > Backend Development > How can a bidirectional hash table in Python enable efficient key- and value-based indexing?
Implementing an Efficient Bidirectional Hash Table
A hash table or dictionary data structure offers efficient indexing and retrieval of values by keys. However, sometimes it is desirable to index by values as well. A bidrectional hash table allows for both key-based and value-based indexing.
Custom Implementation Using a Bidirectional Class
The Python dict implementation provides a unidirectional mapping from keys to values. To create a bidirectional hash table, we can create our own class that inherits from the dict class:
<code class="python">class bidict(dict): def __init__(self, *args, **kwargs): super(bidict, self).__init__(*args, **kwargs) self.inverse = {} for key, value in self.items(): self.inverse.setdefault(value, []).append(key) def __setitem__(self, key, value): if key in self: self.inverse[self[key]].remove(key) super(bidict, self).__setitem__(key, value) self.inverse.setdefault(value, []).append(key) def __delitem__(self, key): self.inverse.setdefault(self[key], []).remove(key) if self[key] in self.inverse and not self.inverse[self[key]]: del self.inverse[self[key]] super(bidict, self).__delitem__(key)</code>
Key Features:
Example Usage:
<code class="python">bd = bidict({'a': 1, 'b': 2}) print(bd) # {'a': 1, 'b': 2} print(bd.inverse) # {1: ['a'], 2: ['b']} bd['c'] = 1 # Two keys have the same value print(bd) # {'a': 1, 'c': 1, 'b': 2} print(bd.inverse) # {1: ['a', 'c'], 2: ['b']}</code>
Advantages:
This implementation combines the efficiency of Python's dict data structure with the flexibility of bidirectional access. It is a powerful tool for various applications where value-based indexing is necessary.
The above is the detailed content of How can a bidirectional hash table in Python enable efficient key- and value-based indexing?. For more information, please follow other related articles on the PHP Chinese website!