


How to Combine Pandas DataFrames Generated in a For Loop: A Comprehensive Solution
Combining Pandas DataFrames Generated in a For Loop: A Comprehensive Solution
When it comes to data manipulation, Pandas offers a powerful set of tools for working with structured data. One common task is to combine data from multiple sources. One way to achieve this is by generating dataframes in a for loop and then appending them to create a unified dataframe.
To append dataframes generated in a for loop, you'll need to utilize a slightly different approach from the one you tried. The code you provided:
appended_data = pandas.DataFrame.append(data) # requires at least two arguments
requires at least two dataframes as arguments, which is not suitable for appending multiple dataframes one by one. Instead, we can employ pd.concat to merge a list of dataframes into a single, larger dataframe.
Here's an improved solution:
<code class="python">appended_data = [] for infile in glob.glob("*.xlsx"): data = pandas.read_excel(infile) # Store each dataframe in a list appended_data.append(data) # Concatenate the list of dataframes into a single dataframe appended_data = pd.concat(appended_data) # Write the resulting dataframe to a new Excel file appended_data.to_excel('appended.xlsx')</code>
In this revised code:
- We create an empty list appended_data to store individual dataframes.
- Within the loop, we read each Excel file into a dataframe and append it to this list.
- Using pd.concat, we merge all the dataframes in the list into a single dataframe named appended_data.
- Finally, we write the appended dataframe to a new Excel file named "appended.xlsx".
This approach ensures that all dataframes generated in the loop are combined into a single dataframe, providing you with a unified dataset.
The above is the detailed content of How to Combine Pandas DataFrames Generated in a For Loop: A Comprehensive Solution. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
