


Unique Object Identifiers in CPython: Why id({}) == id({}) and id([]) == id([])
CPython's id() function assigns unique identifiers to objects, but this uniqueness is limited to the lifespan of the object. When objects are destroyed, their identifiers become available for reuse.
Consider the following behavior:
<code class="python">tuple1 = () tuple2 = () dict1 = {} dict2 = {} list1 = [] list2 = [] # makes sense, tuples are immutable assert(id(tuple1) == id(tuple2)) # also makes sense dicts are mutable assert(id(dict1) != id(dict2)) # lists are mutable too assert(id(list1) != id(list2)) assert(id(()) == id(())) # why no assertion error on this? assert(id({}) == id({})) # or this? assert(id([]) == id([]))</code>
Why do id({}) == id({}) and id([]) == id([]) return True?
CPython's Memory Allocation
These assertions succeed because of CPython's memory allocation mechanism. When id({}), CPython allocates a dictionary, passes its memory address to id(), and then discards the dictionary. When it's called again, CPython finds a free memory block and reuses the same address. Mutability does not directly affect this behavior.
Code Object Caching
Code objects cache tuples and strings used within a specific function, class, or module. If the same literal (integer, string, or certain tuple) appears multiple times, the same object is reused. Mutable objects are always created at runtime, preventing reuse.
Conclusion
Therefore, an object's id in CPython is unique only during its lifespan. Once an object is destroyed, its id may be reused by other objects. This explains the behavior observed in the provided code snippet.
The above is the detailed content of Why do `id({}) == id({})` and `id([]) == id([])` return True in CPython?. For more information, please follow other related articles on the PHP Chinese website!

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Zend Studio 13.0.1
Powerful PHP integrated development environment

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
