Volatile Variables in C 11
The introduction of a multi-threaded machine model in the C 11 standard raises questions about the behavior of volatile variables, which have traditionally been used to prevent optimization that could result in undefined behavior in concurrent environments.
In C 98/03, the lack of recognition of multi-threading in the memory model meant that the compiler could optimize out the read of a volatile variable, leading to the infamous example of an endless while loop waiting for a variable to change its value.
However, the C 11 memory model acknowledges the possibility of concurrent access to variables. Does this mean that volatile is now deprecated?
Compiler Optimizations and Undefined Behavior
The answer lies in the nuanced nature of the C 11 memory model. While it recognizes multi-threading, it does not eliminate the possibility of undefined behavior when accessing variables without proper synchronization. Even in a multi-threaded environment, non-atomic access to shared variables remains undefined.
volatile int x;
void func() {
x = 0;
while (x == 0) {}
}
Therefore, in our example code, the compiler is still free to optimize away the read of x in the while loop, resulting in undefined behavior. Volatile only affects memory accesses, not threading behavior.
Memory Barriers and Threading Integrity
Threading integrity requires proper synchronization mechanisms to ensure the visibility of writes in one thread to another. The C 11 memory model specifically defines when and how writes become visible to other threads. volatile does not address this requirement.
volatile guarantees that the compiler cannot optimize away memory reads from a variable, but it does not provide any guarantees about thread visibility. Memory barriers, issued by synchronization constructs like locks or atomic operations, are necessary to ensure that writes are synchronized among cores.
Conclusions
In C 11, volatile remains relevant for preventing optimizations that could lead to incorrect memory accesses. However, it is not sufficient for multithreaded programming. Proper synchronization mechanisms are still required to guarantee thread integrity and defined behavior in concurrent environments.
The above is the detailed content of Is `volatile` Still Relevant in C 11 Multithreading?. For more information, please follow other related articles on the PHP Chinese website!

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor
