


Curve Fitting: Exponential and Logarithmic Approaches in Python
While polynomial curve fitting is readily available in Python using polyfit(), this guide explores methods for exponential and logarithmic curve fitting.
Logarithmic Fitting
To fit a line of the form y = A B log x, simply perform a polynomial fit of y against log x.
<code class="python">import numpy as np x = np.array([1, 7, 20, 50, 79]) y = np.array([10, 19, 30, 35, 51]) coeffs = np.polyfit(np.log(x), y, 1) print("y ≈", coeffs[1], "log(x) +", coeffs[0]) # y ≈ 8.46 log(x) + 6.62</code>
Exponential Fitting
To fit a line of the form y = Ae^{Bx}, take the logarithm of both sides and perform a polynomial fit of log y against x.
<code class="python">x = np.array([10, 19, 30, 35, 51]) y = np.array([1, 7, 20, 50, 79]) coeffs = np.polyfit(x, np.log(y), 1) print("y ≈ exp(", coeffs[1], ") * exp(", coeffs[0], " * x) = 0.670 * exp(0.105 * x)")</code>
For better accuracy, leverage weights proportional to y using the w keyword in polyfit().
<code class="python">coeffs = np.polyfit(x, np.log(y), 1, w=np.sqrt(y)) print("y ≈ exp(", coeffs[1], ") * exp(", coeffs[0], " * x) = 4.12 * exp(0.0601 * x)")</code>
Note that most spreadsheet and scientific calculator applications use an unweighted formula for exponential regression, so avoid weights if compatibility is desired.
Using scipy.optimize.curve_fit
If scipy is available, use curve_fit for fitting models without transformations.
<code class="python">from scipy.optimize import curve_fit # Logarithmic fitting coeffs, _ = curve_fit(lambda t, a, b: a + b * np.log(t), x, y) print("y ≈", coeffs[1], "log(x) +", coeffs[0]) # y ≈ 6.62 + 8.46 log(x) # Exponential fitting with initial guess coeffs, _ = curve_fit(lambda t, a, b: a * np.exp(b * t), x, y, p0=(4, 0.1)) print("y ≈", coeffs[0], "exp(", coeffs[1], " * x) = 4.88 exp(0.0553 x)")</code>
By providing an initial guess, curve_fit can reach the desired local minimum for exponential fitting, resulting in a more accurate fit than the transformed polyfit method.
The above is the detailed content of How can I perform exponential and logarithmic curve fitting in Python?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
