search
HomeBackend DevelopmentPython TutorialUsing Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions

Table of Contents

  1. About
  2. Tools Used
  3. Solution Architecture Diagram
  4. Deployment Process
    • Prerequisites
    • Secrets for GitHub Actions
    • To create a new secret:
    • Setting Up the DevOps Service Account
  5. GitHub Actions Pipeline: Steps
    • enable-services
    • deploy-buckets
    • deploy-cloud-function
    • deploy-composer-service-account
    • deploy-bigquery-dataset-bigquery-tables
    • deploy-composer-environment
    • deploy-composer-http-connection
    • deploy-dags
  6. GitHub Actions Workflow Explanation
  7. Resources Created After Deployment
  8. Conclusion
  9. References

About

This post explores the use of Google Cloud Functions for processing data in a three-tier architecture. The solution is orchestrated with Google Composer and features automated deployments using GitHub Actions. We will walk through the tools used, deployment process, and pipeline steps, providing a clear guide for building an end-to-end cloud-based data pipeline.

Tools Used

  1. Google Cloud Platform (GCP): The primary cloud environment.
  2. Cloud Storage: For storing input and processed data across different layers (Bronze, Silver, Gold).
  3. Cloud Functions: Serverless functions responsible for data processing in each tier.
  4. Google Composer: An orchestration tool based on Apache Airflow, used to schedule and manage workflows.
  5. GitHub Actions: Automation tool for deploying and managing the pipeline infrastructure.

Solution Architecture Diagram

Using Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions

Deployment Process

Prerequisites

Before setting up the project, ensure you have the following:

  1. GCP Account: A Google Cloud account with billing enabled.
  2. Service Account for DevOps: A service account with the required permissions to deploy resources in GCP.
  3. Secrets in GitHub: Store the GCP service account credentials, project ID, and bucket name as secrets in GitHub for secure access.

Secrets for GitHub Actions

To securely access your GCP project and resources, set the following secrets in GitHub Actions:

  • BUCKET_DATALAKE: Your Cloud Storage bucket for the data lake.
  • GCP_DEVOPS_SA_KEY: The service account key in JSON format.
  • PROJECT_ID: Your GCP project ID.
  • REGION_PROJECT_ID: The region where your GCP project is deployed.

To create a new secret:

1. In project repository, menu **Settings** 
2. **Security**, 
3. **Secrets and variables**,click in access **Action**
4. **New repository secret**, type a **name** and **value** for secret.

Using Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions

For more details , access :
https://docs.github.com/pt/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions

Setting Up the DevOps Service Account

Create a service account in GCP with permissions for Cloud Functions, Composer, BigQuery, and Cloud Storage. Grant the necessary roles such as:

  • Cloud Functions Admin
  • Composer User
  • BigQuery Data Editor
  • Storage Object Admin

GitHub Actions Pipeline: Steps

The pipeline automates the entire deployment process, ensuring all components are set up correctly. Here's a breakdown of the key jobs from the GitHub Actions file, each responsible for a different aspect of the deployment.

enable-services

enable-services:
    runs-on: ubuntu-22.04
    steps:
    - uses: actions/checkout@v2

    # Step to Authenticate with GCP
    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Configure  Cloud SDK
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    - name: Set up python 3.8
      uses: actions/setup-python@v2
      with:
        python-version: 3.8.16

    # Step to Create GCP Bucket 
    - name: Enable gcp service api's
      run: |-
        gcloud services enable ${{ env.GCP_SERVICE_API_0 }}
        gcloud services enable ${{ env.GCP_SERVICE_API_1 }}
        gcloud services enable ${{ env.GCP_SERVICE_API_2 }}
        gcloud services enable ${{ env.GCP_SERVICE_API_3 }}
        gcloud services enable ${{ env.GCP_SERVICE_API_4 }}

deploy-buckets

deploy-buckets:
    needs: [enable-services]
    runs-on: ubuntu-22.04
    timeout-minutes: 10

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    # Step to Create GCP Bucket 
    - name: Create Google Cloud Storage - datalake
      run: |-
        if ! gsutil ls -p ${{ secrets.PROJECT_ID }} gs://${{ secrets.BUCKET_DATALAKE }} &> /dev/null; \
          then \
            gcloud storage buckets create gs://${{ secrets.BUCKET_DATALAKE }} --default-storage-class=nearline --location=${{ env.REGION }}
          else
            echo "Cloud Storage : gs://${{ secrets.BUCKET_DATALAKE }}  already exists" ! 
          fi


    # Step to Upload the file to GCP Bucket - transient files
    - name: Upload transient files to Google Cloud Storage
      run: |-
        TARGET=${{ env.INPUT_FOLDER }}
        BUCKET_PATH=${{ secrets.BUCKET_DATALAKE }}/${{ env.INPUT_FOLDER }}    
        gsutil cp -r $TARGET gs://${BUCKET_PATH}

deploy-cloud-function

deploy-cloud-function:
    needs: [enable-services, deploy-buckets]
    runs-on: ubuntu-22.04
    steps:
    - uses: actions/checkout@v2

    # Step to Authenticate with GCP
    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Configure  Cloud SDK
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    - name: Set up python 3.10
      uses: actions/setup-python@v2
      with:
        python-version: 3.10.12
    #cloud_function_scripts/csv_to_parquet
    - name: Create cloud function - ${{ env.CLOUD_FUNCTION_1_NAME }}
      run: |-
        cd ${{ env.FUNCTION_SCRIPTS }}/${{ env.CLOUD_FUNCTION_1_NAME }}
        gcloud functions deploy ${{ env.CLOUD_FUNCTION_1_NAME }} \
        --gen2 \
        --cpu=${{ env.FUNCTION_CPU  }} \
        --memory=${{ env.FUNCTION_MEMORY  }} \
        --runtime ${{ env.PYTHON_FUNCTION_RUNTIME }} \
        --trigger-http \
        --region ${{ env.REGION }} \
        --entry-point ${{ env.CLOUD_FUNCTION_1_NAME }}

    - name: Create cloud function - ${{ env.CLOUD_FUNCTION_2_NAME }}
      run: |-
        cd ${{ env.FUNCTION_SCRIPTS }}/${{ env.CLOUD_FUNCTION_2_NAME }}
        gcloud functions deploy ${{ env.CLOUD_FUNCTION_2_NAME }} \
        --gen2 \
        --cpu=${{ env.FUNCTION_CPU  }} \
        --memory=${{ env.FUNCTION_MEMORY  }} \
        --runtime ${{ env.PYTHON_FUNCTION_RUNTIME }} \
        --trigger-http \
        --region ${{ env.REGION }} \
        --entry-point ${{ env.CLOUD_FUNCTION_2_NAME }}

    - name: Create cloud function - ${{ env.CLOUD_FUNCTION_3_NAME }}
      run: |-
        cd ${{ env.FUNCTION_SCRIPTS }}/${{ env.CLOUD_FUNCTION_3_NAME }}
        gcloud functions deploy ${{ env.CLOUD_FUNCTION_3_NAME }} \
        --gen2 \
        --cpu=${{ env.FUNCTION_CPU  }} \
        --memory=${{ env.FUNCTION_MEMORY  }} \
        --runtime ${{ env.PYTHON_FUNCTION_RUNTIME }} \
        --trigger-http \
        --region ${{ env.REGION }} \
        --entry-point ${{ env.CLOUD_FUNCTION_3_NAME }}

deploy-composer-service-account

deploy-composer-service-account:
    needs: [enable-services, deploy-buckets, deploy-cloud-function ]
    runs-on: ubuntu-22.04
    timeout-minutes: 10

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker


    - name: Create service account
      run: |-

        if ! gcloud iam service-accounts list | grep -i ${{ env.SERVICE_ACCOUNT_NAME}} &> /dev/null; \
          then \
            gcloud iam service-accounts create ${{ env.SERVICE_ACCOUNT_NAME }} \
            --display-name=${{ env.SERVICE_ACCOUNT_DESCRIPTION }}
          fi
    - name: Add permissions to service account
      run: |-
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/composer.user"

        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/storage.objectAdmin"

        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/cloudfunctions.invoker"

        # Permissão para criar e gerenciar ambientes Composer
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/composer.admin"

        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/composer.worker"

        # Permissão para criar e configurar instâncias e recursos na VPC
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/compute.networkAdmin"

        # Permissão para interagir com o Cloud Storage, necessário para buckets e logs
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/storage.admin"

        # Permissão para criar e gerenciar recursos no projeto, como buckets e instâncias
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/editor"

        # Permissão para acessar e usar recursos necessários para o IAM
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/iam.serviceAccountUser"

        gcloud functions add-iam-policy-binding ${{env.CLOUD_FUNCTION_1_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/cloudfunctions.invoker"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_1_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" 

        gcloud functions add-iam-policy-binding ${{env.CLOUD_FUNCTION_2_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/cloudfunctions.invoker"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_2_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com"     

        gcloud functions add-iam-policy-binding ${{env.CLOUD_FUNCTION_3_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/cloudfunctions.invoker"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_3_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com"   

        SERVICE_NAME_1=$(gcloud functions describe ${{ env.CLOUD_FUNCTION_1_NAME }} --region=${{ env.REGION }} --format="value(serviceConfig.service)")
        gcloud run services add-iam-policy-binding $SERVICE_NAME_1 \
        --region="${{env.REGION}}" \
        --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
        --role="roles/run.invoker"

        SERVICE_NAME_2=$(gcloud functions describe ${{ env.CLOUD_FUNCTION_2_NAME }} --region=${{ env.REGION }} --format="value(serviceConfig.service)")
        gcloud run services add-iam-policy-binding $SERVICE_NAME_2 \
        --region="${{env.REGION}}" \
        --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
        --role="roles/run.invoker"

        SERVICE_NAME_3=$(gcloud functions describe ${{ env.CLOUD_FUNCTION_3_NAME }} --region=${{ env.REGION }} --format="value(serviceConfig.service)")
        gcloud run services add-iam-policy-binding $SERVICE_NAME_3 \
        --region="${{env.REGION}}" \
        --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
        --role="roles/run.invoker"


        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_1_NAME}} \
        --region="${{env.REGION}}" \
        --member="allUsers"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_2_NAME}} \
        --region="${{env.REGION}}" \
        --member="allUsers"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_3_NAME}} \
        --region="${{env.REGION}}" \
        --member="allUsers"

deploy-bigquery-dataset-bigquery-tables

deploy-bigquery-dataset-bigquery-tables:
    needs: [enable-services, deploy-buckets, deploy-cloud-function, deploy-composer-service-account ]
    runs-on: ubuntu-22.04
    timeout-minutes: 10

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker


    - name: Create Big Query Dataset
      run: |-  
        if ! bq ls --project_id ${{ secrets.PROJECT_ID}} -a | grep -w ${{ env.BIGQUERY_DATASET}} &> /dev/null; \
          then 

            bq --location=${{ env.REGION }} mk \
          --default_table_expiration 0 \
          --dataset ${{ env.BIGQUERY_DATASET }}

          else
            echo "Big Query Dataset : ${{ env.BIGQUERY_DATASET }} already exists" ! 
          fi

    - name: Create Big Query table
      run: |-
        TABLE_NAME_CUSTOMER=${{ env.BIGQUERY_DATASET}}.${{ env.BIGQUERY_TABLE_CUSTOMER}}
        c=0
        for table in $(bq ls --max_results 1000 "${{ secrets.PROJECT_ID}}:${{ env.BIGQUERY_DATASET}}" | tail -n +3 | awk '{print }'); do

            # Determine the table type and file extension
            if bq show --format=prettyjson $BIGQUERY_TABLE_CUSTOMER | jq -r '.type' | grep -q -E "TABLE"; then
              echo "Dataset ${{ env.BIGQUERY_DATASET}} already has table named : $table " !
              if [ "$table" == "${{ env.BIGQUERY_TABLE_CUSTOMER}}" ]; then
                echo "Dataset ${{ env.BIGQUERY_DATASET}} already has table named : $table " !
                ((c=c+1))       
              fi                  
            else
                echo "Ignoring $table"            
                continue
            fi
        done
        echo " contador $c "
        if [ $c == 0 ]; then
          echo "Creating table named : $table for Dataset ${{ env.BIGQUERY_DATASET}} " !

          bq mk --table \
          $TABLE_NAME_CUSTOMER \
          ./big_query_schemas/customer_schema.json


        fi

deploy-composer-environment

deploy-composer-environment:
    needs: [enable-services, deploy-buckets, deploy-cloud-function, deploy-composer-service-account, deploy-bigquery-dataset-bigquery-tables ]
    runs-on: ubuntu-22.04
    timeout-minutes: 40

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    # Create composer environments
    - name: Create composer environments
      run: |-
        if ! gcloud composer environments list --project=${{ secrets.PROJECT_ID }} --locations=${{ env.REGION }} | grep -i ${{ env.COMPOSER_ENV_NAME }} &> /dev/null; then
            gcloud composer environments create ${{ env.COMPOSER_ENV_NAME }} \
                --project ${{ secrets.PROJECT_ID }} \
                --location ${{ env.REGION }} \
                --environment-size ${{ env.COMPOSER_ENV_SIZE }} \
                --image-version ${{ env.COMPOSER_IMAGE_VERSION }} \
                --service-account ${{ env.SERVICE_ACCOUNT_NAME }}@${{ secrets.PROJECT_ID }}.iam.gserviceaccount.com
        else
            echo "Composer environment ${{ env.COMPOSER_ENV_NAME }} already exists!"
        fi

    # Create composer environments
    - name: Create composer variable PROJECT_ID 
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION}} variables \
        -- set PROJECT_ID ${{ secrets.PROJECT_ID }}

    - name: Create composer variable REGION
      run: |-  
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
          --location ${{ env.REGION }} variables \
          -- set REGION ${{ env.REGION }}

    - name: Create composer variable CLOUD_FUNCTION_1_NAME
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }}\
          --location ${{ env.REGION }} variables \
          -- set CLOUD_FUNCTION_1_NAME ${{ env.CLOUD_FUNCTION_1_NAME }}

    - name: Create composer variable CLOUD_FUNCTION_2_NAME
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set CLOUD_FUNCTION_2_NAME ${{ env.CLOUD_FUNCTION_2_NAME }}

    - name: Create composer variable CLOUD_FUNCTION_3_NAME
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set CLOUD_FUNCTION_3_NAME ${{ env.CLOUD_FUNCTION_3_NAME }}

    - name: Create composer variable BUCKET_DATALAKE
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION}} variables \
        -- set BUCKET_NAME ${{ secrets.BUCKET_DATALAKE }}

    - name: Create composer variable TRANSIENT_FILE_PATH
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set TRANSIENT_FILE_PATH ${{ env.TRANSIENT_FILE_PATH }}

    - name: Create composer variable BRONZE_PATH 
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set BRONZE_PATH ${{ env.BRONZE_PATH }}

    - name: Create composer variable SILVER_PATH
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set SILVER_PATH ${{ env.SILVER_PATH }}

    - name: Create composer variable REGION_PROJECT_ID
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set REGION_PROJECT_ID "${{ env.REGION }}-${{ secrets.PROJECT_ID }}"


    - name: Create composer variable BIGQUERY_DATASET
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set BIGQUERY_DATASET "${{ env.BIGQUERY_DATASET }}"

    - name: Create composer variable BIGQUERY_TABLE_CUSTOMER
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set BIGQUERY_TABLE_CUSTOMER "${{ env.BIGQUERY_TABLE_CUSTOMER }}"

deploy-composer-http-connection

deploy-composer-http-connection:
    needs: [enable-services, deploy-buckets, deploy-cloud-function, deploy-composer-service-account, deploy-bigquery-dataset-bigquery-tables, deploy-composer-environment ]
    runs-on: ubuntu-22.04

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    - name: Create composer http connection HTTP_CONNECTION
      run: |-
        HOST="https://${{ env.REGION }}-${{ secrets.PROJECT_ID }}.cloudfunctions.net"
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} connections \
        -- add ${{ env.HTTP_CONNECTION }} \
        --conn-type ${{ env.CONNECTION_TYPE  }} \
        --conn-host $HOST

deploy-dags

deploy-dags:
    needs: [enable-services, deploy-buckets, deploy-cloud-function, deploy-composer-service-account, deploy-bigquery-dataset-bigquery-tables, deploy-composer-environment, deploy-composer-http-connection ]
    runs-on: ubuntu-22.04

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    - name: Get Composer bucket name and Deploy DAG to Composer
      run: |-
        COMPOSER_BUCKET=$(gcloud composer environments describe ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} \
        --format="value(config.dagGcsPrefix)")
        gsutil -m cp -r ./dags/* $COMPOSER_BUCKET/dags/


Resources Created After Deployment

After the deployment process is complete, the following resources will be available:

  1. Cloud Storage Buckets: Organized into Bronze, Silver, and Gold layers.
  2. Cloud Functions:: Responsible for processing data across the three layers.
  3. Service Account for Composer:: With appropriate permissions for invoking Cloud Functions.
  4. BigQuery Dataset and Tables: A DataFrame created for storing processed data.
  5. Google Composer Environment: Orchestrates the Cloud Functions with daily executions.
  6. Composer DAG: The DAG manages the workflow that invokes Cloud Functions and processes data.

Conclusion

This solution demonstrates how to leverage Google Cloud Functions, Composer, and BigQuery to create a robust three-tier data processing pipeline. The automation using GitHub Actions ensures a smooth, reproducible deployment process, making it easier to manage cloud-based data pipelines at scale.

References

  1. Google Cloud Platform Documentation: https://cloud.google.com/docs
  2. GitHub Actions Documentation:: https://docs.github.com/en/actions
  3. Google Composer Documentation:: https://cloud.google.com/composer/docs
  4. Cloud Functions Documentation: https://cloud.google.com/functions/docs
  5. GitHub Repo: https://github.com/jader-lima/gcp-cloud-functions-to-bigquery

The above is the detailed content of Using Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to solve the permissions problem encountered when viewing Python version in Linux terminal?How to solve the permissions problem encountered when viewing Python version in Linux terminal?Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)