


pandas: Unexpected Behavior with Multiple Conditions while Indexing Data Frame
When filtering rows in a DataFrame by values in multiple columns, it's essential to understand the behavior of the AND (&) and OR (|) operators.
In a recent observation, it was noted that the behavior of these operators seemed reversed. The OR operator appeared to behave like the AND operator, and vice versa.
To illustrate, consider the following DataFrame:
<code class="python">df = pd.DataFrame({'a': range(5), 'b': range(5) }) # Insert -1 values df['a'][1] = -1 df['b'][1] = -1 df['a'][3] = -1 df['b'][4] = -1 df1 = df[(df.a != -1) & (df.b != -1)] df2 = df[(df.a != -1) | (df.b != -1)] print(pd.concat([df, df1, df2], axis=1, keys=['Original df', 'Using AND (&)', 'Using OR (|)']))</code>
The result is:
<code class="python"> Original df Using AND (&) Using OR (|) a b a b a b 0 0 0 0 0 0 0 1 -1 -1 NaN NaN NaN NaN 2 2 2 2 2 2 2 3 -1 3 NaN NaN -1 3 4 4 -1 NaN NaN 4 -1 [5 rows x 6 columns]</code>
As seen in the output, the AND operator drops rows where at least one value is -1, while the OR operator retains rows where both values are not -1.
This behavior may seem counterintuitive, but it makes sense if we remember that we're specifying the conditions for rows we want to keep, not drop.
- For df1, we're specifying that we want to keep rows where both df.a and df.b are not -1.
- For df2, we're specifying that we want to keep rows where either df.a or df.b is not -1.
Therefore, the behavior observed is correct.
The above is the detailed content of Why Does Pandas\' AND (&) and OR (|) Operators Seem Reversed When Indexing a DataFrame with Multiple Conditions?. For more information, please follow other related articles on the PHP Chinese website!

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
