Home >Backend Development >Python Tutorial >How to Efficiently Add Multiple Columns to a Pandas DataFrame?
Assigning Multiple Columns to Pandas DataFrame Simultaneously
In the context of working with dataframes in Pandas, the question arises on how to efficiently add multiple columns in one assignment.
Initial Attempt and Its Shortcoming
Many users naturally attempt the following syntax to accomplish this task:
df[['column_new_1', 'column_new_2', 'column_new_3']] = [np.nan, 'dogs', 3]
However, this approach fails because Pandas requires the right-hand side to be a DataFrame when creating new columns with the column-list syntax.
Alternative Approaches
Multiple viable solutions exist to achieve the desired result. Here are some of the recommended approaches:
1. Single-Column Assignments with Iterator Unpacking
df['column_new_1'], df['column_new_2'], df['column_new_3'] = np.nan, 'dogs', 3
2. DataFrame Expansion with Pandas.DataFrame()
df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)
3. Concatenation with Pandas.concat
df = pd.concat( [ df, pd.DataFrame( [[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3'] ) ], axis=1 )
4. Join with Pandas.join
df = df.join(pd.DataFrame( [[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3'] ))
5. Dictionary Expansion with Pandas.join
df = df.join(pd.DataFrame( { 'column_new_1': np.nan, 'column_new_2': 'dogs', 'column_new_3': 3 }, index=df.index ))
6. Multiple Column Arguments with .assign()
df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)
7. Column Creation and Assignment
new_cols = ['column_new_1', 'column_new_2', 'column_new_3'] new_vals = [np.nan, 'dogs', 3] df = df.reindex(columns=df.columns.tolist() + new_cols) # add empty cols df[new_cols] = new_vals # multi-column assignment works for existing cols
8. Separate Assignments
df['column_new_1'] = np.nan df['column_new_2'] = 'dogs' df['column_new_3'] = 3
The choice of approach depends on the specific requirements of the user. For simplicity and efficiency, separate assignments may often be the preferred solution. However, if adding multiple columns with the same type or value is desired, the other approaches provide flexibility and conciseness.
The above is the detailed content of How to Efficiently Add Multiple Columns to a Pandas DataFrame?. For more information, please follow other related articles on the PHP Chinese website!