


Does Multiprocessing Replicate Read-Only Shared Data?
Introduction
In multiprocessing scenarios, it's crucial to optimize resource usage by ensuring that shared data is not duplicated across multiple processes. Understanding how read-only data is handled in these situations can save significant memory and performance overhead.
Question
Consider the following Python code:
<code class="python">glbl_array = # a 3 Gb array def my_func(args, def_param=glbl_array): # do stuff on args and def_param if __name__ == '__main__': pool = Pool(processes=4) pool.map(my_func, range(1000))</code>
Can we guarantee or encourage that the different processes share the glbl_array without creating individual copies?
Answer
To ensure shared access without duplication, we can utilize the shared memory mechanism provided by the multiprocessing module in Python. Here's how it can be implemented:
<code class="python">import multiprocessing import ctypes import numpy as np shared_array_base = multiprocessing.Array(ctypes.c_double, 10 * 10) shared_array = np.ctypeslib.as_array(shared_array_base.get_obj()) shared_array = shared_array.reshape(10, 10) # Parallel processing def my_func(i, def_param=shared_array): shared_array[i, :] = i if __name__ == '__main__': pool = multiprocessing.Pool(processes=4) pool.map(my_func, range(10)) print(shared_array)</code>
Implementation Details
The code creates a shared memory array (shared_array_base) using the multiprocessing.Array class. It then converts it into a Numpy array (shared_array) for convenient manipulation.
The main function (my_func) takes shared_array as a default parameter to avoid unnecessary copying, and Linux's copy-on-write semantics ensure that data duplication only occurs when modifications are made to the shared area.
By running the code, you'll notice that the shared shared_array is printed without any duplication, indicating that the processes shared the same memory object.
The above is the detailed content of Can Multiprocessing Share Read-Only Shared Data Without Replication?. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
