


Printing Raw HTTP Requests in Python with Requests
When working with the Requests module, you may encounter situations where it's beneficial to inspect the raw HTTP request being sent to the server. This includes not only the headers but also the request line and content.
Solution using PreparedRequest:
From version 1.2.3 onwards, Requests introduced the PreparedRequest object. This object represents the "exact bytes that will be sent to the server," as documented here: https://requests.readthedocs.io/en/latest/advanced/prepared-requests-and-api/
To print the raw HTTP request in a pretty format, you can leverage the PreparedRequest object as follows:
<code class="python">import requests req = requests.Request('POST', 'http://stackoverflow.com', headers={'X-Custom': 'Test'}, data='a=1&b=2') prepared = req.prepare() def pretty_print_POST(req): """ Formats and prints the prepared request in a readable manner. """ print('{}\n{}\r\n{}\r\n\r\n{}'.format( '-----------START-----------', req.method + ' ' + req.url, '\r\n'.join('{}: {}'.format(k, v) for k, v in req.headers.items()), req.body, )) pretty_print_POST(prepared) # Output: -----------START----------- POST http://stackoverflow.com/ Content-Length: 7 X-Custom: Test a=1&b=2</code>
This will display the request line, headers, and request body in a visually pleasing format.
Note: The formatting used in the pretty_print_POST function is designed for readability and may differ slightly from the actual request sent.
Once you have inspected the prepared request, you can proceed to send the actual request using the Requests Session as follows:
<code class="python">s = requests.Session() s.send(prepared)</code>
For more detailed information on advanced features such as Prepared Requests and API, refer to the Requests documentation: https://requests.readthedocs.io/en/latest/advanced/prepared-requests-and-api/
The above is the detailed content of How to Preview Raw HTTP Requests in Python Using Requests\' PreparedRequest?. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
