


Peak Detection Algorithm in Python/SciPy
Detecting peaks in data is a common task in data analysis. For Python users, SciPy provides the scipy.signal.find_peaks function, tailored specifically for this purpose.
Choosing the Right Parameters
To effectively identify peaks, understanding the available parameters is crucial. While parameters like width, threshold, and distance offer some utility, the parameter that truly distinguishes true peaks from noise is prominence.
What is Prominence?
Prominence measures the height required to descend from a peak to any higher terrain. In other words, it indicates the peak's "importance" relative to surrounding data points.
Using Prominence for Peak Detection
Testing find_peaks using a frequency-varying sinusoid demonstrates the effectiveness of prominence. While other parameters struggle to account for varying peak widths or noise levels, prominence consistently identifies significant peaks.
Code Example
The following code snippet illustrates the use of find_peaks with different parameters:
<code class="python">import numpy as np import matplotlib.pyplot as plt from scipy.signal import find_peaks x = np.sin(2*np.pi*(2**np.linspace(2,10,1000))*np.arange(1000)/48000) + np.random.normal(0, 1, 1000) * 0.15 peaks, _ = find_peaks(x, distance=20) peaks2, _ = find_peaks(x, prominence=1) # BEST! peaks3, _ = find_peaks(x, width=20) peaks4, _ = find_peaks(x, threshold=0.4) plt.subplot(2, 2, 1) plt.plot(peaks, x[peaks], "xr"); plt.plot(x); plt.legend(['distance']) plt.subplot(2, 2, 2) plt.plot(peaks2, x[peaks2], "ob"); plt.plot(x); plt.legend(['prominence']) plt.subplot(2, 2, 3) plt.plot(peaks3, x[peaks3], "vg"); plt.plot(x); plt.legend(['width']) plt.subplot(2, 2, 4) plt.plot(peaks4, x[peaks4], "xk"); plt.plot(x); plt.legend(['threshold']) plt.show()</code>
The results show that prominence effectively identifies the significant peaks, even in the presence of noise. By combining parameters like prominence with others like distance or width, you can further refine peak detection in complex data.
The above is the detailed content of How Does Prominence Help in Peak Detection in Python Using SciPy?. For more information, please follow other related articles on the PHP Chinese website!

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Chinese version
Chinese version, very easy to use

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 English version
Recommended: Win version, supports code prompts!