Home >Web Front-end >JS Tutorial >JavaScript OOP Concepts: Class-Based vs. Prototype-Based
To write a detailed blog on JavaScript's Object-Oriented Programming (OOP) concepts and prototypes, we'll go through first-class functions, first-class instances, inheritance, polymorphism, encapsulation, and abstraction, explaining both class-based and prototype-based approaches.
JavaScript is unique in that it can support both class-based OOP (introduced in ES6) and prototype-based OOP (the original way JavaScript handled OOP). This blog will dive into key OOP concepts like first-class functions, first-class instances, inheritance, polymorphism, encapsulation, and abstraction using both approaches.
In JavaScript, functions are first-class citizens. This means that functions can be:
Absolutely! Let's break down the blog post to cover both first-class functions and first-class instances using both functional and class-based approaches in JavaScript. This will provide a clear understanding of these concepts in the context of Object-Oriented Programming (OOP).
// Assigning a function to a variable const greet = function(name) { return `Hello, ${name}!`; }; // Passing a function as an argument function logGreeting(fn, name) { console.log(fn(name)); } // Returning a function function createMultiplier(multiplier) { return function(number) { return number * multiplier; }; } logGreeting(greet, "John"); // Output: Hello, John! const double = createMultiplier(2); console.log(double(5)); // Output: 10
Explanation:
Although functions are first-class citizens, we can also create classes that mimic similar behavior.
class Greeter { constructor(name) { this.name = name; } greet() { return `Hello, ${this.name}!`; } } // Logging greeting class Logger { static logGreeting(greeter) { console.log(greeter.greet()); } } // Using classes to demonstrate first-class functions const greeter = new Greeter("John"); Logger.logGreeting(greeter); // Output: Hello, John!
Explanation:
Instances of objects or classes can also be treated as first-class citizens. They can be assigned to variables, passed as arguments, and stored in collections.
Like functions, instances of objects or classes can also be treated as first-class citizens. They can be:
// Assigning a function to a variable const greet = function(name) { return `Hello, ${name}!`; }; // Passing a function as an argument function logGreeting(fn, name) { console.log(fn(name)); } // Returning a function function createMultiplier(multiplier) { return function(number) { return number * multiplier; }; } logGreeting(greet, "John"); // Output: Hello, John! const double = createMultiplier(2); console.log(double(5)); // Output: 10
Explanation:
class Greeter { constructor(name) { this.name = name; } greet() { return `Hello, ${this.name}!`; } } // Logging greeting class Logger { static logGreeting(greeter) { console.log(greeter.greet()); } } // Using classes to demonstrate first-class functions const greeter = new Greeter("John"); Logger.logGreeting(greeter); // Output: Hello, John!
Explanation:
Class-Based Inheritance allows you to create a new class that inherits properties and methods from an existing class using the extends keyword.
function Car(make, model) { this.make = make; this.model = model; this.startEngine = function() { console.log(`${this.make} ${this.model} engine started.`); }; } const myCar = new Car("Toyota", "Corolla"); const yourCar = new Car("Tesla", "Model 3"); // Passing instance as an argument function showCarDetails(car) { console.log(`Car: ${car.make} ${car.model}`); } showCarDetails(myCar); // Output: Car: Toyota Corolla
class Car { constructor(make, model) { this.make = make; this.model = model; } startEngine() { console.log(`${this.make} ${this.model} engine started.`); } } const myCar = new Car("Toyota", "Corolla"); const yourCar = new Car("Tesla", "Model 3"); // Passing instance as an argument function showCarDetails(car) { console.log(`Car: ${car.make} ${car.model}`); } showCarDetails(myCar); // Output: Car: Toyota Corolla
Explanation:
Polymorphism allows different objects to define their own versions of the same method, which can be called on objects of a parent type.
class Animal { constructor(name) { this.name = name; } speak() { console.log(`${this.name} makes a sound.`); } } class Dog extends Animal { speak() { console.log(`${this.name} barks.`); } } const myDog = new Dog("Buddy"); myDog.speak(); // Output: Buddy barks.
function Animal(name) { this.name = name; } Animal.prototype.speak = function() { console.log(`${this.name} makes a sound.`); }; function Dog(name) { Animal.call(this, name); // Inherit properties } Dog.prototype = Object.create(Animal.prototype); // Inherit methods Dog.prototype.constructor = Dog; Dog.prototype.speak = function() { console.log(`${this.name} barks.`); }; const myDog = new Dog("Buddy"); myDog.speak(); // Output: Buddy barks.
Explanation:
Encapsulation involves hiding the internal details of an object and exposing only what is necessary. In JavaScript, we achieve this by using private fields (with #) in class-based OOP or closures in prototype-based OOP.
class Animal { speak() { console.log("Animal makes a sound."); } } class Dog extends Animal { speak() { console.log("Dog barks."); } } class Cat extends Animal { speak() { console.log("Cat meows."); } } const animals = [new Dog(), new Cat()]; animals.forEach(animal => animal.speak()); // Output: // Dog barks. // Cat meows.
function Animal() {} Animal.prototype.speak = function() { console.log("Animal makes a sound."); }; function Dog() {} Dog.prototype = Object.create(Animal.prototype); Dog.prototype.speak = function() { console.log("Dog barks."); }; function Cat() {} Cat.prototype = Object.create(Animal.prototype); Cat.prototype.speak = function() { console.log("Cat meows."); }; const animals = [new Dog(), new Cat()]; animals.forEach(animal => animal.speak()); // Output: // Dog barks. // Cat meows.
Explanation:
Abstraction hides complex logic and only exposes necessary details. It can be achieved by abstracting away internal details and exposing essential methods.
// Assigning a function to a variable const greet = function(name) { return `Hello, ${name}!`; }; // Passing a function as an argument function logGreeting(fn, name) { console.log(fn(name)); } // Returning a function function createMultiplier(multiplier) { return function(number) { return number * multiplier; }; } logGreeting(greet, "John"); // Output: Hello, John! const double = createMultiplier(2); console.log(double(5)); // Output: 10
class Greeter { constructor(name) { this.name = name; } greet() { return `Hello, ${this.name}!`; } } // Logging greeting class Logger { static logGreeting(greeter) { console.log(greeter.greet()); } } // Using classes to demonstrate first-class functions const greeter = new Greeter("John"); Logger.logGreeting(greeter); // Output: Hello, John!
Explanation:
Understanding the differences and similarities between class-based and prototype-based OOP in JavaScript enhances your programming skills. First-class functions and instances, inheritance, polymorphism, encapsulation, and abstraction are fundamental concepts that you can leverage to write cleaner and more maintainable code.
While the modern class-based syntax (introduced in ES6) is more readable and familiar to developers coming from other OOP languages, the prototype-based approach is more fundamental to JavaScript's underlying behavior.
This blog demonstrates how core OOP concepts — first-class functions, first-class instances, inheritance, polymorphism, encapsulation, and abstraction — can be achieved in both paradigms. Whether you're using classes or prototypes, JavaScript offers robust mechanisms to implement OOP in a flexible and powerful way.
The above is the detailed content of JavaScript OOP Concepts: Class-Based vs. Prototype-Based. For more information, please follow other related articles on the PHP Chinese website!