I recently spent two hours getting a simple LlamaIndex app to run on AWS Lambda. While the function itself consists of just a few lines of Python code (as shown below), managing dependencies and deployment can be tricky.
import json from llama_index.llms.openai import OpenAI llm=OpenAI(model="gpt-4o-mini") def lambda_handler(event, context): response = llm.complete("What public transportation might be available in a city?") return { 'statusCode': 200, 'body': str(response), }
Here are some key tips that helped me:
First, install packages for the correct platform. It's important to install all packages for the "manylinux2014_x86_64" target platform. Otherwise, certain packages might be incompatible with the AWS Lambda runtime. To ensure compatibility, install dependencies with the following command:
pip install -r requirements.txt --platform manylinux2014_x86_64 --target ./deps --only-binary=:all:
Second, Lambda has a 250MB limit for the total code package size, which can quickly become an issue if you're using LlamaIndex or other large dependencies. If your package exceeds this limit, check the largest files in your dependencies folder:
du -h -d 2 | sort -hr | head -n20
In my case, I found that the pandas/tests directory was taking up about 35MB of space, which was unnecessary for my function, so I removed it to bring the package size back within the limit.
rm -r deps/pandas/tests
Then, zip everything up and upload via S3. After trimming unnecessary files, create a zip archive containing both your code and dependencies. Since Lambda's web console has a 50MB upload limit, you'll need to upload larger zip files to an S3 bucket and use the S3 URI to deploy the function.
zip -r test_lambda.zip data/ lambda_function.py cd deps/ zip -r ../test_lambda.zip .
Finally, adjust your Lambda settings before deploying. By default, Lambda functions are allocated only 128MB of memory and a 3-second timeout, which is insufficient for many AI applications involving large dependencies and calling LLMs. I'd increase the memory to 512MB and extend the timeout to 30 seconds. Additionally, don't forget to set essential environment variables like your OpenAI API Key.
It took me quite a few tries to figure out the correct way to install packages and bundle everything together for Lambda. AWS Lambda is user-friendly for basic scripts, but once you add larger dependencies, things get more complicated.
Here's the final sequence of steps:
# Install dependencies pip install -r requirements.txt --platform manylinux2014_x86_64 --target ./deps --only-binary=:all: # Create a zip file for code and data zip -r test_lambda.zip data/ lambda_function.py # Include dependencies in the zip file, while removing large unused files cd deps/ rm -r pandas/tests zip -r ../test_lambda.zip .
p.s., I also tried deploying a similar function on DBOS Cloud, and it only took a single command:
dbos-cloud app deploy
In DBOS, the dependency management was handled automatically via the requirements.txt file, and environment variables were set in dbos-config.yaml. I might be biased, but I enjoy the simplicity of DBOS Cloud's deployment process.
The above is the detailed content of How to Deploy an AI App (w/ Large Deps) to AWS Lambda. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version
