search
HomeBackend DevelopmentPython TutorialStreamlit: The Magic Wand for ML App Creation

Streamlit is a powerful open-source framework that allows you to create web applications for data science and machine learning with just a few lines of Python code.

It is simple, intuitive, and requires no frontend experience, making it a great tool for both beginners and experienced developers who want to quickly deploy machine learning models.

In this blog, I’ll guide you through a step-by-step process to build a basic Streamlit app and a machine learning project using the Iris dataset with a RandomForestClassifier.

Getting Started with Streamlit

Before we jump into the project, let's walk through some basic Streamlit functionality to get comfortable with the framework. You can install Streamlit using the following command:


pip install streamlit


Once installed, you can start your first Streamlit app by creating a Python file, say app.py, and running it using:


streamlit run app.py


Now, let’s explore the core features of Streamlit:

1. Writing Titles and Displaying Text


import streamlit as st

# Writing a title
st.title("Hello World")

# Display simple text
st.write("Displaying a simple text")


Streamlit: The Magic Wand for ML App Creation

2. Displaying DataFrames


import pandas as pd

# Creating a DataFrame
df = pd.DataFrame({
    "first column": [1, 2, 3, 4],
    "second column": [5, 6, 7, 8]
})

# Display the DataFrame
st.write("Displaying a DataFrame")
st.write(df)


Streamlit: The Magic Wand for ML App Creation

3. Visualizing Data with Charts


import numpy as np

# Generating random data
chart_data = pd.DataFrame(
    np.random.randn(20, 4), columns=['a', 'b', 'c', 'd']
)

# Display the line chart
st.line_chart(chart_data)


Streamlit: The Magic Wand for ML App Creation

4. User Interaction: Text Input, Sliders, and Select Boxes
Streamlit enables interactive widgets like text inputs, sliders, and select boxes that update dynamically based on user input.


# Text input
name = st.text_input("Your Name Is:")
if name:
    st.write(f'Hello, {name}')

# Slider
age = st.slider("Select Your Age:", 0, 100, 25)
if age:
    st.write(f'Your Age Is: {age}')

# Select Box
choices = ["Python", "Java", "Javascript"]
lang = st.selectbox('Favorite Programming Language', choices)
if lang:
    st.write(f'Favorite Programming Language is {lang}')


Streamlit: The Magic Wand for ML App Creation

5. File Upload
You can allow users to upload files and display their contents dynamically in your Streamlit app:


# File uploader for CSV files
file = st.file_uploader('Choose a CSV file', 'csv')

if file:
    data = pd.read_csv(file)
    st.write(data)


Streamlit: The Magic Wand for ML App Creation

Building a Machine Learning Project with Streamlit

Now that you’re familiar with the basics, let's dive into creating a machine learning project. We will use the famous Iris dataset and build a simple classification model using RandomForestClassifier from scikit-learn.

Project Structure :

  • Load the dataset.
  • Train a RandomForestClassifier.
  • Allow users to input features using sliders.
  • Predict the species based on the input features.

1. Install necessary dependencies
First, let’s install the necessary libraries:


pip install streamlit scikit-learn numpy pandas


2. Import Libraries and Load Data
Let’s import the necessary libraries and load the Iris dataset:


import streamlit as st
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

# Cache data for efficient loading
@st.cache_data
def load_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df["species"] = iris.target
    return df, iris.target_names

df, target_name = load_data()


3. Train the Machine Learning Model
Once we have the data, we will train a RandomForestClassifier to predict the species of a flower based on its features:


# Train RandomForestClassifier
model = RandomForestClassifier()
model.fit(df.iloc[:, :-1], df["species"])


4. Creating the Input Interface
Now, we’ll create sliders in the sidebar to allow users to input features for making predictions:


# Sidebar for user input
st.sidebar.title("Input Features")
sepal_length = st.sidebar.slider("Sepal length", float(df['sepal length (cm)'].min()), float(df['sepal length (cm)'].max()))
sepal_width = st.sidebar.slider("Sepal width", float(df['sepal width (cm)'].min()), float(df['sepal width (cm)'].max()))
petal_length = st.sidebar.slider("Petal length", float(df['petal length (cm)'].min()), float(df['petal length (cm)'].max()))
petal_width = st.sidebar.slider("Petal width", float(df['petal width (cm)'].min()), float(df['petal width (cm)'].max()))


5. Predicting the Species
After getting the user inputs, we will make a prediction using the trained model:


# Prepare the input data
input_data = [[sepal_length, sepal_width, petal_length, petal_width]]

# Prediction
prediction = model.predict(input_data)
prediction_species = target_name[prediction[0]]

# Display the prediction
st.write("Prediction:")
st.write(f'Predicted species is {prediction_species}')


This will looks like:

Streamlit: The Magic Wand for ML App Creation

Streamlit: The Magic Wand for ML App Creation

Finally,Streamlit makes it incredibly easy to create and deploy machine learning web interface with minimal effort. ? In just a few lines of code, we built an interactive app ? that allows users to input features and predict the species of a flower ? using a machine learning model. ??

Happy coding! ?

The above is the detailed content of Streamlit: The Magic Wand for ML App Creation. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Is Tuple Comprehension possible in Python? If yes, how and if not why?Is Tuple Comprehension possible in Python? If yes, how and if not why?Apr 28, 2025 pm 04:34 PM

Article discusses impossibility of tuple comprehension in Python due to syntax ambiguity. Alternatives like using tuple() with generator expressions are suggested for creating tuples efficiently.(159 characters)

What are Modules and Packages in Python?What are Modules and Packages in Python?Apr 28, 2025 pm 04:33 PM

The article explains modules and packages in Python, their differences, and usage. Modules are single files, while packages are directories with an __init__.py file, organizing related modules hierarchically.

What is docstring in Python?What is docstring in Python?Apr 28, 2025 pm 04:30 PM

Article discusses docstrings in Python, their usage, and benefits. Main issue: importance of docstrings for code documentation and accessibility.

What is a lambda function?What is a lambda function?Apr 28, 2025 pm 04:28 PM

Article discusses lambda functions, their differences from regular functions, and their utility in programming scenarios. Not all languages support them.

What is a break, continue and pass in Python?What is a break, continue and pass in Python?Apr 28, 2025 pm 04:26 PM

Article discusses break, continue, and pass in Python, explaining their roles in controlling loop execution and program flow.

What is a pass in Python?What is a pass in Python?Apr 28, 2025 pm 04:25 PM

The article discusses the 'pass' statement in Python, a null operation used as a placeholder in code structures like functions and classes, allowing for future implementation without syntax errors.

Can we Pass a function as an argument in Python?Can we Pass a function as an argument in Python?Apr 28, 2025 pm 04:23 PM

Article discusses passing functions as arguments in Python, highlighting benefits like modularity and use cases such as sorting and decorators.

What is the difference between / and // in Python?What is the difference between / and // in Python?Apr 28, 2025 pm 04:21 PM

Article discusses / and // operators in Python: / for true division, // for floor division. Main issue is understanding their differences and use cases.Character count: 158

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor