Problems with Strings
I am accessing IRIS databases with JDBC (or ODBC) using Python. I want to fetch the data into a pandas dataframe to manipulate the data and create charts from it. I ran into a problem with string handling while using JDBC. This post is to help if anyone else has the same issues. Or, if there is an easier way to solve this, let me know in the comments!
I am using OSX, so I am unsure how unique my problem is. I am using Jupyter Notebooks, although the code would generally be the same if you used any other Python program or framework.
The JDBC problem
When I fetch data from the database the column descriptions and any string data are returned as data type java.lang.String. If you print string data data it will look like: "(p,a,i,n,i,n,t,h,e,r,e,a,r)" instead of the expected "painintherear".
This is probably because character strings of data type java.lang.String are coming through as an iterable or array when fetched using JDBC. This can happen if the Python-Java bridge you're using (e.g., JayDeBeApi, JDBC) is not automatically converting java.lang.String to a Python str in a single step.
Python's str string representation, in contrast, has the whole string as a single unit. When Python retrieves a normal str (e.g. via ODBC), it doesn't split into individual characters.
The JDBC Solution
To fix this issue, you must ensure that the java.lang.String is correctly converted into Python's str type. You can explicitly handle this conversion when processing the fetched data so it is not interpreted as an iterable or list of characters.
There are many ways to do this string manipulation; this is what I did.
import pandas as pd import pyodbc import jaydebeapi import jpype def my_function(jdbc_used) # Some other code to create the connection goes here cursor.execute(query_string) if jdbc_used: # Fetch the results, convert java.lang.String in the data to Python str # (java.lang.String is returned "(p,a,i,n,i,n,t,h,e,r,e,a,r)" Convert to str type "painintherear" results = [] for row in cursor.fetchall(): converted_row = [str(item) if isinstance(item, jpype.java.lang.String) else item for item in row] results.append(converted_row) # Get the column names and ensure they are Python strings column_names = [str(col[0]) for col in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) # Check the results print(df.head().to_string()) else: # I was also testing ODBC # For very large result sets get results in chunks using cursor.fetchmany(). or fetchall() results = cursor.fetchall() # Get the column names column_names = [column[0] for column in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) # Do stuff with your dataframe
The ODBC problem
When using an ODBC connection, strings are not returned or are NA.
If you're connecting to a database that contains Unicode data (e.g., names in different languages) or if your application needs to store or retrieve non-ASCII characters, you must ensure that the data remains correctly encoded when passed between the database and your Python application.
The ODBC solution
This code ensures that string data is encoded and decoded using UTF-8 when sending and retrieving data to the database. It's especially important when dealing with non-ASCII characters or ensuring compatibility with Unicode data.
def create_connection(connection_string, password): connection = None try: # print(f"Connecting to {connection_string}") connection = pyodbc.connect(connection_string + ";PWD=" + password) # Ensure strings are read correctly connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8") connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8") connection.setencoding(encoding="utf8") except pyodbc.Error as e: print(f"The error '{e}' occurred") return connection
connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8")
Tells pyodbc how to decode character data from the database when fetching SQL_CHAR types (typically, fixed-length character fields).
connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8")
Sets the decoding for SQL_WCHAR, wide-character types (i.e., Unicode strings, such as NVARCHAR or NCHAR in SQL Server).
connection.setencoding(encoding="utf8")
Ensures that any strings or character data sent from Python to the database will be encoded using UTF-8,
meaning Python will translate its internal str type (which is Unicode) into UTF-8 bytes when communicating with the database.
Putting it all together
Install JDBC
Install JAVA - use dmg
https://www.oracle.com/middleeast/java/technologies/downloads/#jdk23-mac
Update shell to set default version
$ /usr/libexec/java_home -V Matching Java Virtual Machines (2): 23 (arm64) "Oracle Corporation" - "Java SE 23" /Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home 1.8.421.09 (arm64) "Oracle Corporation" - "Java" /Library/Internet Plug-Ins/JavaAppletPlugin.plugin/Contents/Home /Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home $ echo $SHELL /opt/homebrew/bin/bash $ vi ~/.bash_profile
Add JAVA_HOME to your path
export JAVA_HOME=$(/usr/libexec/java_home -v 23) export PATH=$JAVA_HOME/bin:$PATH
Get the JDBC driver
https://intersystems-community.github.io/iris-driver-distribution/
Put the jar file somewhere... I put it in $HOME
$ ls $HOME/*.jar /Users/myname/intersystems-jdbc-3.8.4.jar
Sample code
It assumes you have set up ODBC (an example for another day, the dog ate my notes...).
Note: this is a hack of my real code. Note the variable names.
import os import datetime from datetime import date, time, datetime, timedelta import pandas as pd import pyodbc import jaydebeapi import jpype def jdbc_create_connection(jdbc_url, jdbc_username, jdbc_password): # Path to JDBC driver jdbc_driver_path = '/Users/yourname/intersystems-jdbc-3.8.4.jar' # Ensure JAVA_HOME is set os.environ['JAVA_HOME']='/Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home' os.environ['CLASSPATH'] = jdbc_driver_path # Start the JVM (if not already running) if not jpype.isJVMStarted(): jpype.startJVM(jpype.getDefaultJVMPath(), classpath=[jdbc_driver_path]) # Connect to the database connection = None try: connection = jaydebeapi.connect("com.intersystems.jdbc.IRISDriver", jdbc_url, [jdbc_username, jdbc_password], jdbc_driver_path) print("Connection successful") except Exception as e: print(f"An error occurred: {e}") return connection def odbc_create_connection(connection_string): connection = None try: # print(f"Connecting to {connection_string}") connection = pyodbc.connect(connection_string) # Ensure strings are read correctly connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8") connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8") connection.setencoding(encoding="utf8") except pyodbc.Error as e: print(f"The error '{e}' occurred") return connection # Parameters odbc_driver = "InterSystems ODBC" odbc_host = "your_host" odbc_port = "51773" odbc_namespace = "your_namespace" odbc_username = "username" odbc_password = "password" jdbc_host = "your_host" jdbc_port = "51773" jdbc_namespace = "your_namespace" jdbc_username = "username" jdbc_password = "password" # Create connection and create charts jdbc_used = True if jdbc_used: print("Using JDBC") jdbc_url = f"jdbc:IRIS://{jdbc_host}:{jdbc_port}/{jdbc_namespace}?useUnicode=true&characterEncoding=UTF-8" connection = jdbc_create_connection(jdbc_url, jdbc_username, jdbc_password) else: print("Using ODBC") connection_string = f"Driver={odbc_driver};Host={odbc_host};Port={odbc_port};Database={odbc_namespace};UID={odbc_username};PWD={odbc_password}" connection = odbc_create_connection(connection_string) if connection is None: print("Unable to connect to IRIS") exit() cursor = connection.cursor() site = "SAMPLE" table_name = "your.TableNAME" desired_columns = [ "RunDate", "ActiveUsersCount", "EpisodeCountEmergency", "EpisodeCountInpatient", "EpisodeCountOutpatient", "EpisodeCountTotal", "AppointmentCount", "PrintCountTotal", "site", ] # Construct the column selection part of the query column_selection = ", ".join(desired_columns) query_string = f"SELECT {column_selection} FROM {table_name} WHERE Site = '{site}'" print(query_string) cursor.execute(query_string) if jdbc_used: # Fetch the results results = [] for row in cursor.fetchall(): converted_row = [str(item) if isinstance(item, jpype.java.lang.String) else item for item in row] results.append(converted_row) # Get the column names and ensure they are Python strings (java.lang.String is returned "(p,a,i,n,i,n,t,h,e,a,r,s,e)" column_names = [str(col[0]) for col in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) print(df.head().to_string()) else: # For very large result sets get results in chunks using cursor.fetchmany(). or fetchall() results = cursor.fetchall() # Get the column names column_names = [column[0] for column in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) print(df.head().to_string()) # # Build charts for a site # cf.build_7_day_rolling_average_chart(site, cursor, jdbc_used) cursor.close() connection.close() # Shutdown the JVM (if you started it) # jpype.shutdownJVM()
The above is the detailed content of Access IRIS database with ODBC or JDBC using Python. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
