Notes to master DSA:
Master DSA to be "eligible" for high paying salaries offered to S/w Ers.
DSA is the major chunk of Software Engineering.
Before writing code, make sure you understand the bigger picture and then drill down into details.
Its all about understanding the concepts visually, and then translating those concepts into code via any l/g as DSA is language agnostic.
Every upcoming concept is somehow linked to previous concepts. Hence, don't hop topics or move forward unless you have mastered the concept thoroughly by practicing it.
When we learn concepts visually, we get deeper understanding of the material which inturn helps us to retain the knowledge for longer duration.
If you follow these advices, you'll have nothing to lose.
Linear DS: Arrays LinkedList(LL) & Doubly LL (DLL) Stack Queue & Circular Queue Non-linear DS: Trees Graphs
Big O Notation
It is essential to understand this notation for perf comparison of algos.
Its a mathematical way for comparing efficiency of algos.
Time Complexity
The faster the code runs, the lower it will be
V. impt for most of the interviews.
Space Complexity
Considered rarely as compared to time complexity due to low storage cost.
Need to be understood, as an interviewer may ask you from this also.
Three Greek Letters:
- Omega
- Theta
- Omicron i.e Big-O [seen most often]
Cases for algo
- Best case [represented using Omega]
- Avg case [represented using Theta]
- Worst case [represented using Omicron]
Technically there is no best case of avg case Big-O. They are denoted using omega & theta respectively.
We are always measuring worst case.
## O(n): Efficient Code Proportional Its simplified by dropping the constant values. An operation happens 'n' times, where n is passed as an argument as shown below. Always going to be a straight line having slope 1, as no of operations is proportional to n. X axis - value of n. Y axis - no of operations // O(n) function printItems(n){ for(let i=1; i <pre class="brush:php;toolbar:false">## O(n^2): Nested loops. No of items which are output in this case are n*n for a 'n' input. function printItems(n){ for(let i=0; i<n i console.log for j="0;" printitems> <pre class="brush:php;toolbar:false">## O(n^3): No of items which are output in this case are n*n*n for a 'n' input. // O(n*n*n) function printItems(n){ for(let i=0; i<n i console.log iteration for j="0;" mid k="0;" inner printitems comparison of time complexity: o> O(n*n) ## Drop non-dominants: function xxx(){ // O(n*n) Nested for loop // O(n) Single for loop } Complexity for the below code will O(n*n) + O(n) By dropping non-dominants, it will become O(n*n) As O(n) will be negligible as the n value grows. O(n*n) is dominant term, O(n) is non-dominnat term here. </n>
## O(1): Referred as Constant time i.e No of operations do not change as 'n' changes. Single operation irrespective of no of operands. MOST EFFICIENT. Nothing is more efficient than this. Its a flat line overlapping x-axis on graph. // O(1) function printItems(n){ return n+n+n+n; } printItems(3); ## Comparison of Time Complexity: O(1) > O(n) > O(n*n)
## O(log n) Divide and conquer technique. Partitioning into halves until goal is achieved. log(base2) of 8 = 3 i.e we are basically saying 2 to what power is 8. That power denotes the no of operations to get to the result. Also, to put it in another way we can say how many times we need to divide 8 into halves(this makes base 2 for logarithmic operation) to get to the single resulting target item which is 3. Ex. Amazing application is say for a 1,000,000,000 array size, how many times we need to cut to get to the target item. log(base 2) 1,000,000,000 = 31 times i.e 2^31 will make us reach the target item. Hence, if we do the search in linear fashion then we need to scan for billion items in the array. But if we use divide & conquer approach, we can find it in just 31 steps. This is the immense power of O(log n) ## Comparison of Time Complexity: O(1) > O(log n) > O(n) > O(n*n) Best is O(1) or O(log n) Acceptable is O(n)
O(n log n) : Used in some sorting Algos. Most efficient sorting algo we can make unless we are sorting only nums.
Tricky Interview Ques: Different Terms for Inputs. function printItems(a,b){ // O(a) for(let i=0; i<a i console.log o for j="0;" printitems we can have both variables equal to suppose a is and b then will be very different. hence it eventually what call it. similarly if these were nested loops become> <pre class="brush:php;toolbar:false">## Arrays No reindexing is required in arrays for push-pop operations. Hence both are O(1). Adding-Removing from end in array is O(1) Reindexing is required in arrays for shift-unshift operations. Hence, both are O(n) operations, where n is no of items in the array. Adding-Removing from front in array is O(n) Inserting anywhere in array except start and end positions: myArr.splice(indexForOperation, itemsToBeRemoved, ContentTobeInsterted) Remaining array after the items has to be reindexed. Hence, it will be O(n) and not O(0.5 n) as Big-O always meassures worst case, and not avg case. 0.5 is constant, hence its droppped. Same is applicable for removing an item from an array also as the items after it has to be reindexed. Finding an item in an array: if its by value: O(n) if its by index: O(1) Select a DS based on the use-case. For index based, array will be a great choice. If a lot of insertion-deletion is perform in the begin, then use some other DS as reindexing will make it slow.
Comparison of Time Complexity for n=100:
O(1) = 1
O(log 100) = 7
O(100) = 100
O(n^2) = 10,000
Comparison of Time Complexity for n=1000:
O(1) = 1
O(log 1000) = ~10
O(1000) = 1000
O(1000*1000) = 1,000,000
Mainly we will focus on these 4:
Big O(n*n): Nested Loops
Big O(n): Proportional
Big O(log n): Divide & conquer
Big O(1): Constant
O(n!) usually happens when we deliberately write bad code.
O(n*n) is horrible Algo
O(n log n) is acceptable and used by certain sorting algos
O(n) : Acceptable
O(log n), O(1) : Best
Space complexity is almost same for all DS i.e O(n).
Space complexity will vary from O(n) to O(log n) or O(1) with sorting algos
Time complexity is what varies based on algo
Best time complexity for sorting other than numbers like string is O(n log n) which is in Quick, Merge, Time, heap sorts.
Best way to apply your learning is to code as much as you can.
Selecting which DS to choose in which problem statement based on Pros-Cons of each DS.
For more info, refer to: bigocheatsheet.com
The above is the detailed content of Intro to DSA & Big O Notation. For more information, please follow other related articles on the PHP Chinese website!

JavaScript core data types are consistent in browsers and Node.js, but are handled differently from the extra types. 1) The global object is window in the browser and global in Node.js. 2) Node.js' unique Buffer object, used to process binary data. 3) There are also differences in performance and time processing, and the code needs to be adjusted according to the environment.

JavaScriptusestwotypesofcomments:single-line(//)andmulti-line(//).1)Use//forquicknotesorsingle-lineexplanations.2)Use//forlongerexplanationsorcommentingoutblocksofcode.Commentsshouldexplainthe'why',notthe'what',andbeplacedabovetherelevantcodeforclari

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
