Just Finished Studying Default Functional Interfaces in Java, I thought of sharing them all!
Functional interfaces are interfaces that have only one abstract method. They are necessary if you'll be dealing with lambda expressions (functional programming). They simplify code and are widely used in streams. While you can create your own functional interfaces, why worry when Java provides us with some important ones like Consumer, Predicate, Function, and Supplier?
1. Consumer:
Consumer is a functional interface that represents an operation that accepts a single input argument and returns no result. It’s typically used to perform an action on the given argument (like printing or logging) without modifying it.
Signature: void accept(T t) (where T is the Generic type)
2. Predicate:
Predicate is a functional interface that represents a single argument function that returns a boolean value. It’s often used for filtering or evaluating conditions (e.g., checking if a number is even).
Signature: boolean test(T t)
3. Function:
Function is a functional interface that represents a function that accepts one argument and produces a result. It’s commonly used for transformations (e.g., converting one type to another or modifying data).
Signature: R apply(T t)
4. Supplier:
Supplier is a functional interface that represents a function with no input arguments and returns a result. It’s often used for generating or supplying values without needing input.
Signature: T get()
We can effectively use functional interfaces like Consumer, Predicate, Function, and Supplier by typically defining generic methods that accept these interfaces as parameters. This allows us to leverage the power of generics and ensure that our methods can work with various types.
Here's example of the complete code that demonstrates the functionality of all of them
import java.util.List; import java.util.Random; import java.util.function.*; public class Main { public static void main(String[] args) { // Consumer usingConsumer((a) -> System.out.printf("Hello %s", a), "saami"); System.out.println(); // Bi-Consumer usingBiConsumer((a, b) -> System.out.printf("Name: %s, Age: %d", a, b), "saami", 20); System.out.println(); // Predicate var result1 = usingPredicate((a) -> a % 2 == 0, 34); if (result1) { System.out.println("Even"); } else { System.out.println("Odd"); } // Bi-Predicate var result2 = usingBiPredicate((a, b) -> a > b, 12, 22); if (result2) { System.out.println("Greater"); } else { System.out.println("Lesser"); } // Function var result3 = usingFunction((a) -> a + ": this is a number", 5); System.out.println(result3); // Bi-Function var result4 = usingBiFunction((a, b) -> (a > b ? "Greater": "Lesser"), 5, 6); System.out.println(result4); // Unary-Operator var result5 = usingUnaryOperator((a) -> a+5, 10); System.out.println(result5); // Binary-Operator var result6 = usingBinaryOperator((a, b) -> a + b, 12, 32); System.out.println(result6); Random r = new Random(); // Function as Predicate var result7 = usingFunctionAsPredicate((a) -> a > 99, 999); System.out.println(result7); // Using Consumer for printing of the list. printData((a) -> { for (var ele : a) { System.out.println(ele); } } , List.of("S1", "S2", "S3", "S4", "S5")); // Using Supplier as a random number generator String[] arr = {"saami", "john", "raymond", "puff"}; System.out.println(getRandomOne(arr, () -> new Random().nextInt(arr.length))); // Using Custom Comparator System.out.println(usingCustomFunctionalInterface((a, b, c) -> a + b + c, "Saami", " Abbas", " Khan")); } public static <t> void usingConsumer(Consumer<t> consumer, T a) { // Method that takes consumer interface will return void. // Can print something constituting 'a' consumer.accept(a); } public static <t l> void usingBiConsumer(BiConsumer<t l> biConsumer, T a, L b) { biConsumer.accept(a, b); } public static <t> boolean usingPredicate(Predicate<t> predicate, T a) { return predicate.test(a); } public static <t l> boolean usingBiPredicate(BiPredicate<t l> biPredicate, T a, L b) { return biPredicate.test(a, b); } public static <t r> R usingFunction(Function<t r> function, T a) { // T for the parameter and R for the return type here the return type could be as same as T or // could be different like if T is Integer the R could be String 8 + "" return function.apply(a); } public static <t u r> R usingBiFunction(BiFunction<t u r> biFunction, T a, U b) { return biFunction.apply(a, b); } public static <t> T usingUnaryOperator(UnaryOperator<t> unaryOperator, T a) { return unaryOperator.apply(a); } public static <t> T usingBinaryOperator(BinaryOperator<t> binaryOperator, T a, T b) { return binaryOperator.apply(a, b); } public static <t r> R usingFunctionAsPredicate(Function<t r> prediFunction, T a) { return prediFunction.apply(a); } public static <t> void printData(Consumer<t> consumer, T a) { /* * Prints the data, (List.of()) using a for loop inside of lambda function. */ consumer.accept(a); } public static String getRandomOne(String[] arr, Supplier<integer> supplier) { return arr[supplier.get()]; } @FunctionalInterface interface Concat<t> { T concat(T a, T b, T c); } public static <t> T usingCustomFunctionalInterface(Concat<t> concat, T a, T b, T c) { return concat.concat(a, b, c); } } </t></t></t></integer></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t></t>
Final Verdict
Functional interfaces in Java are a powerful tool for simplifying code and improving readability. Whether you're processing collections, performing transformations, or handling data flow, these interfaces make it easier to define concise operations.
By understanding and applying functional interfaces like Consumer, Predicate, Function, Supplier, and custom ones, you can take full advantage of Java’s functional programming features.
The above is the detailed content of Default Functional Interfaces in Java. For more information, please follow other related articles on the PHP Chinese website!

This article analyzes the top four JavaScript frameworks (React, Angular, Vue, Svelte) in 2025, comparing their performance, scalability, and future prospects. While all remain dominant due to strong communities and ecosystems, their relative popul

This article addresses the CVE-2022-1471 vulnerability in SnakeYAML, a critical flaw allowing remote code execution. It details how upgrading Spring Boot applications to SnakeYAML 1.33 or later mitigates this risk, emphasizing that dependency updat

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

Node.js 20 significantly enhances performance via V8 engine improvements, notably faster garbage collection and I/O. New features include better WebAssembly support and refined debugging tools, boosting developer productivity and application speed.

This article explores methods for sharing data between Cucumber steps, comparing scenario context, global variables, argument passing, and data structures. It emphasizes best practices for maintainability, including concise context use, descriptive

Iceberg, an open table format for large analytical datasets, improves data lake performance and scalability. It addresses limitations of Parquet/ORC through internal metadata management, enabling efficient schema evolution, time travel, concurrent w

This article explores integrating functional programming into Java using lambda expressions, Streams API, method references, and Optional. It highlights benefits like improved code readability and maintainability through conciseness and immutability


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

WebStorm Mac version
Useful JavaScript development tools

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
