search
HomeBackend DevelopmentPython TutorialI made a token count check app using Streamlit in Snowflake (SiS)

Introduction

Hello, I'm a Sales Engineer at Snowflake. I'd like to share some of my experiences and experiments with you through various posts. In this article, I'll show you how to create an app using Streamlit in Snowflake to check token counts and estimate costs for Cortex LLM.

Note: This post represents my personal views and not those of Snowflake.

What is Streamlit in Snowflake (SiS)?

Streamlit is a Python library that allows you to create web UIs with simple Python code, eliminating the need for HTML/CSS/JavaScript. You can see examples in the App Gallery.

Streamlit in Snowflake enables you to develop and run Streamlit web apps directly on Snowflake. It's easy to use with just a Snowflake account and great for integrating Snowflake table data into web apps.

About Streamlit in Snowflake (Official Snowflake Documentation)

What is Snowflake Cortex?

Snowflake Cortex is a suite of generative AI features in Snowflake. Cortex LLM allows you to call large language models running on Snowflake using simple functions in SQL or Python.

Large Language Model (LLM) Functions (Snowflake Cortex) (Official Snowflake Documentation)

Feature Overview

Image

I made a token count check app using Streamlit in Snowflake (SiS)

Note: The text in the image is from "The Spider's Thread" by Ryunosuke Akutagawa.

Features

  • Users can select a Cortex LLM model
  • Display character and token counts for user-input text
  • Show the ratio of tokens to characters
  • Calculate estimated cost based on Snowflake credit pricing

Note: Cortex LLM pricing table (PDF)

Prerequisites

  • Snowflake account with Cortex LLM access
  • snowflake-ml-python 1.1.2 or later

Note: Cortex LLM region availability (Official Snowflake Documentation)

Source Code

import streamlit as st
from snowflake.snowpark.context import get_active_session
import snowflake.snowpark.functions as F

# Get current session
session = get_active_session()

# Application title
st.title("Cortex AI Token Count Checker")

# AI settings
st.sidebar.title("AI Settings")
lang_model = st.sidebar.radio("Select the language model you want to use",
                              ("snowflake-arctic", "reka-core", "reka-flash", 
                              "mistral-large2", "mistral-large", "mixtral-8x7b", "mistral-7b", 
                              "llama3.1-405b", "llama3.1-70b", "llama3.1-8b", 
                              "llama3-70b", "llama3-8b", "llama2-70b-chat", 
                              "jamba-instruct", "gemma-7b")
)

# Function to count tokens (using Cortex's token counting function)
def count_tokens(model, text):
    result = session.sql(f"SELECT SNOWFLAKE.CORTEX.COUNT_TOKENS('{model}', '{text}') as token_count").collect()
    return result[0]['TOKEN_COUNT']

# Token count check and cost calculation
st.header("Token Count Check and Cost Calculation")

input_text = st.text_area("Select a language model from the left pane and enter the text you want to check for token count:", height=200)

# Let user input the price per credit
credit_price = st.number_input("Enter the price per Snowflake credit (in dollars):", min_value=0.0, value=2.0, step=0.01)

# Credits per 1M tokens for each model (as of 2024/8/30, mistral-large2 is not supported)
model_credits = {
    "snowflake-arctic": 0.84,
    "reka-core": 5.5,
    "reka-flash": 0.45,
    "mistral-large2": 1.95,
    "mistral-large": 5.1,
    "mixtral-8x7b": 0.22,
    "mistral-7b": 0.12,
    "llama3.1-405b": 3,
    "llama3.1-70b": 1.21,
    "llama3.1-8b": 0.19,
    "llama3-70b": 1.21,
    "llama3-8b": 0.19,
    "llama2-70b-chat": 0.45,
    "jamba-instruct": 0.83,
    "gemma-7b": 0.12
}

if st.button("Calculate Token Count"):
    if input_text:
        # Calculate character count
        char_count = len(input_text)
        st.write(f"Character count of input text: {char_count}")

        if lang_model in model_credits:
            # Calculate token count
            token_count = count_tokens(lang_model, input_text)
            st.write(f"Token count of input text: {token_count}")

            # Ratio of tokens to characters
            ratio = token_count / char_count if char_count > 0 else 0
            st.write(f"Token count / Character count ratio: {ratio:.2f}")

            # Cost calculation
            credits_used = (token_count / 1000000) * model_credits[lang_model]
            cost = credits_used * credit_price

            st.write(f"Credits used: {credits_used:.6f}")
            st.write(f"Estimated cost: ${cost:.6f}")
        else:
            st.warning("The selected model is not supported by Snowflake's token counting feature.")
    else:
        st.warning("Please enter some text.")

Conclusion

This app makes it easier to estimate costs for LLM workloads, especially when dealing with languages like Japanese where there's often a gap between character count and token count. I hope you find it useful!

Announcements

Snowflake What's New Updates on X

I'm sharing Snowflake's What's New updates on X. Please feel free to follow if you're interested!

English Version

Snowflake What's New Bot (English Version)
https://x.com/snow_new_en

Japanese Version

Snowflake What's New Bot (Japanese Version)
https://x.com/snow_new_jp

Change History

(20240914) Initial post

Original Japanese Article

https://zenn.dev/tsubasa_tech/articles/4dd80c91508ec4

The above is the detailed content of I made a token count check app using Streamlit in Snowflake (SiS). For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment