Home >Java >javaTutorial >Leetcode : Product Of Array Except Self
This problem looks simple to solve in linear time and space. This problem builds on some of the fundamental concepts of arrays.
Companies that have asked this in their coding interview are Facebook, Amazon, Apple, Netflix, Google, Microsoft, Adobe, and many more top tech companies.
Given an integer array nums, return an array answer such that answer[i] is equal to the product of all the elements of nums except nums[i].
The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
You must write an algorithm that runs in O(n) time and without using the division operation.
Test case#1:
Input: nums = [1,2,3,4] Output: [24,12,8,6]
Test case#2:
Input: nums = [-1,1,0,-3,3] Output: [0,0,9,0,0]
This problem looks simpler to solve in linear time and space, but it is tricky when writing the pseudocode or actual code implementation.
Let us see what the results that are expected from a simple array containing 4 elements:
input = {1, 2, 3, 4}
So, the value at each index is the product of all the other elements in the array except the value itself. The following figure illustrates this.
Based on the above figure, we can come up with a formula. For any given index i, we can find the value using the product of the elements from o to (i - 1) plus product of elements from (i 1) to (N - 1). This is illustrated in the following figure:
Before writing pseudo code, come up with questions and ask the interviewer.
Once you and the interviewer have discussed the above questions, devise various approaches to solving the problem.
To employ the brute force approach, we must execute two for-loops. When the outer loop index matches the inner loop index value, we should skip the product; otherwise, we proceed with the product.
// brute force static int[] bruteForce(int[] nums) { int N = nums.length; int[] result = new int[N]; for (int i = 0; i < N; i++) { int currentProduct = 1; for (int j = 0; j < N; j++) { if (i == j) { continue; } currentProduct *= nums[j]; } result[i] = currentProduct; } return result; }
One way most developers think is to run a product sum of all elements, divide the product sum by each array value, and return the result.
// O(n) time and O(1) space p = 1 for i -> 0 to A[i] p * = A[i] for i -> 0 to (N - 1) A[i] = p/A[i] // if A[i] == 0 ? BAM error‼️
// code implementation static int[] productSum(int[] nums) { int product_sum = 1; for(int num: nums) { product_sum *= num; } for(int i = 0; i < nums.length; i++) { nums[i] = product_sum/nums[i]; } return nums; }
What if one of the array elements contain 0? ?
The value at all the indexes except the index containing 0 will definitely be infinity. Also, the code throws java.lang.ArithmeticException.
Exception in thread "main" java.lang.ArithmeticException: / by zero at dev.ggorantala.ds.arrays.ProductOfArrayItself.productSum(ProductOfArrayItself.java:24) at dev.ggorantala.ds.arrays.ProductOfArrayItself.main(ProductOfArrayItself.java:14)
Learn more about prefix and suffix sum in the Arrays Mastery Course on my website https://ggorantala.dev
Prefix and Suffix are calculated before writing an algorithm for the result. Prefix and Suffix sum formulae are given below:
Function usingPrefixSuffix(nums): N = length of nums result = new array of length N prefix_sum = new array of length N suffix_sum = new array of length N // Calculate prefix products prefix_sum[0] = nums[0] For i from 1 to N-1: prefix_sum[i] = prefix_sum[i-1] * nums[i] // Calculate suffix products suffix_sum[N-1] = nums[N-1] For i from N-2 to 0: suffix_sum[i] = suffix_sum[i+1] * nums[i] // Calculate result array For i from 0 to N-1: If i == 0: result[i] = suffix_sum[i+1] Else If i == N-1: result[i] = prefix_sum[i-1] Else: result[i] = prefix_sum[i-1] * suffix_sum[i+1] Return result
// using prefix and suffix arrays private static int[] usingPrefixSuffix(int[] nums) { int[] result = new int[nums.length]; int[] prefix_sum = new int[nums.length]; int[] suffix_sum = new int[nums.length]; // prefix sum calculation prefix_sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) { prefix_sum[i] = prefix_sum[i - 1] * nums[i]; } // suffix sum calculation suffix_sum[nums.length - 1] = nums[nums.length - 1]; for (int i = nums.length - 2; i >= 0; i--) { suffix_sum[i] = suffix_sum[i + 1] * nums[i]; } for (int i = 0; i < nums.length; i++) { if (i == 0) { // when variable `i` is at 0th index result[i] = suffix_sum[i + 1]; } else if (i == nums.length - 1) { // when variable `i` is at last index result[i] = prefix_sum[i - 1]; } else { // for all other indexes result[i] = prefix_sum[i - 1] * suffix_sum[i + 1]; } } return result; }
Each of these steps involves a single pass through the array, resulting in a total time complexity of O(n)+O(n)+O(n) = 3O(n), which is O(n).
For the suffix array calculation, we override the input nums array instead of creating one.
private static int[] usingPrefixSuffixOptimization(int[] nums) { int[] result = new int[nums.length]; int[] prefix_sum = new int[nums.length]; // prefix sum calculation prefix_sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) { prefix_sum[i] = prefix_sum[i - 1] * nums[i]; } // suffix sum calculation, in-place - `nums` array override for (int i = nums.length - 2; i >= 0; i--) { nums[i] = nums[i + 1] * nums[i]; } for (int i = 0; i < nums.length; i++) { if (i == 0) { // when variable `i` is at 0th index result[i] = nums[i + 1]; } else if (i == nums.length - 1) { // when variable `i` is at last index result[i] = prefix_sum[i - 1]; } else { // for all other indexes result[i] = prefix_sum[i - 1] * nums[i + 1]; } } return result; }
Hence, we reduced the space of O(n). Time and space are not reduced, but we did a small optimization here.
This is a rather easy approach when we use the knowledge of prefix and suffix arrays.
For every given index i, we will calculate the product of all the numbers to the left and then multiply it by the product of all the numbers to the right. This will give us the product of all the numbers except the one at the given index i. Let's look at a formal algorithm that describes this idea more clearly.
Function prefixSuffix1(nums): N = length of nums result = new array of length N prefix_sum = new array of length N suffix_sum = new array of length N // Calculate prefix products prefix_sum[0] = 1 For i from 1 to N-1: prefix_sum[i] = prefix_sum[i-1] * nums[i-1] // Calculate suffix products suffix_sum[N-1] = 1 For i from N-2 to 0: suffix_sum[i] = suffix_sum[i+1] * nums[i+1] // Calculate result array For i from 0 to N-1: result[i] = prefix_sum[i] * suffix_sum[i] Return result
private static int[] prefixSuffixProducts(int[] nums) { int[] result = new int[nums.length]; int[] prefix_sum = new int[nums.length]; int[] suffix_sum = new int[nums.length]; prefix_sum[0] = 1; for (int i = 1; i < nums.length; i++) { prefix_sum[i] = prefix_sum[i - 1] * nums[i - 1]; } suffix_sum[nums.length - 1] = 1; for (int i = nums.length - 2; i >= 0; i--) { suffix_sum[i] = suffix_sum[i + 1] * nums[i + 1]; } for (int i = 0; i < nums.length; i++) { result[i] = prefix_sum[i] * suffix_sum[i]; } return result; }
Each of these steps involves a single pass through the array, resulting in a total time complexity of O(n)+O(n)+O(n) = 3O(n), which is O(n).
All three arrays are of length n, so the total space complexity is O(n) + O(n) + O(n) = 3O(n), which is O(n).
The carry forward technique optimizes us to solve the problem with a more efficient space complexity. Instead of using two separate arrays for prefix and suffix products, we can use the result array itself to store intermediate results and use a single pass for each direction.
Here’s how you can implement the solution using the carry-forward technique:
prefix products prefixProduct = 1 For i from 0 to N-1: result[i] = prefixProduct prefixProduct = prefixProduct * nums[i] // Calculate suffix products and finalize result suffixProduct = 1 For i from N-1 to 0: result[i] = result[i] * suffixProduct suffixProduct = suffixProduct * nums[i] Return result
// carry forward technique private static int[] carryForward(int[] nums) { int n = nums.length; int[] result = new int[n]; // Calculate prefix products int prefixProduct = 1; for (int i = 0; i < n; i++) { result[i] = prefixProduct; prefixProduct *= nums[i]; } // Calculate suffix products and finalize the result int suffixProduct = 1; for (int i = n - 1; i >= 0; i--) { result[i] *= suffixProduct; suffixProduct *= nums[i]; } return result; }
This approach uses only a single extra array (result) and two variables (prefixProduct and suffixProduct), achieving efficient space utilization while maintaining O(n) time complexity.
The above is the detailed content of Leetcode : Product Of Array Except Self. For more information, please follow other related articles on the PHP Chinese website!