search
HomeJavajavaTutorialAWS SnapStart - Part Measuring cold and warm starts with Java using Lambda layer (2)

AWS SnapStart - Part Measuring cold and warm starts with Java using Lambda layer (2)

Introduction

In the blog post How to create, publish and use layers for Java 21 Lambda functions we explained how to publish our first Lambda layer with Java 21. In the article Measuring cold and warm starts with Java 21 using Lambda layer (1) we created the application using this Lambda layer and then measured cold and warm start times without SnapStart enabled, with SnapStart enabled and also applied DynamoDB invocation priming optimization and compare the results with our measurements without using the Lambda layers and providing all dependencies in the POM file which we did in the article Measuring cold and warm starts with Java 21 using different Lambda memory settings. In this article we'll create another Lambda layer will all dependencies and use this layer in our application, make the same measurements and compare the result with the previous experiment.

Measuring cold and warm starts with Java 21 using Lambda layer with all dependencies

For the sake of exploration we'll use the sample Lambda layer for creating the Lambda layer with Java 21 runtime packaging the all dependencies into the layer :

  • dynamodb
  • lambda
  • apache-client
  • aws-lambda-java-core
  • aws-lambda-java-events
  • org-crac
  • slf4j-simple
  • jackson-dataformat-xml

We'll also use the sample application. There are basically 2 Lambda functions defined in the AWS SAM template which both respond to the API Gateway requests and retrieve product by id received from the API Gateway from DynamoDB. One Lambda function GetProductByIdWithPureJava21LambdaWithAllLayer can be used with and without SnapStart and the second one GetProductByIdWithPureJava21LambdaAndPrimingWithAllLayer uses SnapStart and DynamoDB request invocation priming.

In order to use the Lambda layer with all dependencies created previously for the Lambda functions in the AWS SAM template we have to add Layers parameter to the Lambda function like this:

    Type: AWS::Serverless::Function
    Properties:
      FunctionName: GetProductByIdWithPureJava21LambdaWithAllLayer
      AutoPublishAlias: liveVersion
      Layers:
        - !Sub arn:aws:lambda:${AWS::Region}:${AWS::AccountId}:layer:aws-pure-java-21-common-lambda-layer:1
      Handler: software.amazonaws.example.product.handler.GetProductByIdHandler::handleRequest

Please replace the Layer ARN (including the version) with your own which is the output if the publish layer command (aws lambda publish-layer-version).

In pom.xml you see all dependencies with the scope provided (by the Lambda layer attached).

The results of the experiment below were based on reproducing more than 100 cold and approximately 100.000 warm starts with experiment which ran for approximately 1 hour. For it (and experiments from my previous article) I used the load test tool hey, but you can use whatever tool you want, like Serverless-artillery or Postman.
I ran all these experiments by giving our Lambda functions 1024 MB memory and by passing the following compilation option via the environment variable: JAVA_TOOL_OPTIONS: "-XX:+TieredCompilation -XX:TieredStopAtLevel=1" (client compilation without profiling).

In the tables below I'll also provide the results with our measurements without using the Lambda layers (and providing all dependencies in the POM file) which we did in the article Measuring cold and warm starts with Java 21 using different Lambda memory settings and the measurements when using common Lambda layer to directly have the comparison.
Abbreviation c is for the cold start and w is for the warm start.

Cold (c) and warm (w) start times without SnapStart in ms:

Experiment c p50 c p75 c p90 c p99 c p99.9 c max w p50 w p75 w p90 w p99 w p99.9 w max
with all dependencies Lambda Layer 2824.33 2884.24 2963.14 3324.07 3622.44 3625.58 5.50 6.20 7.16 15.50 46.19 1278.41
with common Lambda Layer 3497.91 3597.18 3695.58 3800.47 3908.33 4011.71 5.82 6.72 8.00 17.97 55.48 1709.13
w/o Lambda Layer 3157.6 3213.85 3270.8 3428.2 3601.12 3725.02 5.77 6.50 7.81 20.65 90.20 1423.63

Cold (c) and warm (w) start times with SnapStart without Priming in ms:

Experiment c p50 c p75 c p90 c p99 c p99.9 c max w p50 w p75 w p90 w p99 w p99.9 w max
with all dependencies Lambda Layer 1706.64 1767.40 1893.59 2314.91 2646.68 2647.33 5.59 6.25 7.21 15.75 48.06 1403.71
with common Lambda Layer 2047.12 2124.24 2439.49 2705.52 2735.43 2831.59 5.68 6.40 7.45 17.06 48.45 2139.74
w/o Lambda Layer 1626.69 1741.10 2040.99 2219.75 2319.54 2321.64 5.64 6.41 7.87 21.40 99.81 1355.09

Cold (c) and warm (w) start times with SnapStart and with DynamoDB invocation Priming in ms:

Experiment c p50 c p75 c p90 c p99 c p99.9 c max w p50 w p75 w p90 w p99 w p99.9 w max
with all dependencies Lambda Layer 747.47 786.56 932.23 1099.38 1666.18 1666.62 5.42 5.91 7.39 16.39 45.09 574.61
with common Lambda Layer 713.88 766.38 1141.94 1181.41 1214.94 1215.32 5.59 6.30 7.39 16.39 45.09 574.61
w/o Lambda Layer 702.55 759.52 1038.50 1169.66 1179.05 1179.36 5.73 6.51 7.87 21.75 92.19 328.41

Conclusion

In this article we created the application using the Lambda layer with all dependencies and then measured cold and warm start times without SnapStart enabled, with SnapStart enabled and also applied DynamoDB invocation priming optimization and compared the results with our measurements without using the Lambda layers (and providing all dependencies in the POM file) which we did in the article Measuring cold and warm starts with Java 21 using different Lambda memory settings and using common Lambda layer.

Even if I had some deviations in the results but the trend was always the same after multiple measurements using the Lambda layer with all dependencies:

  • When not enabling SnapStart the cold start with this Lambda layer was up to several hundred milliseconds lower than without usage the Lambda layer for percentiles up to p90 (which surprised me).
  • When enabling SnapStart but not using priming of the DynamoDB request the cold starts varied in favor of the Lambda layer with all dependencies or in favor of the Lambda which doesn’t use Lambda layers at all depending on the percentile.
  • When using SnapStart with priming of the DynamoDB request the cold starts were close for both use cases for percentiles up to p99 and then higher for p99.9 and above when using the Lambda layer with all dependencies. So, the results varied a lot for each use case. What I always observed is that the result’s range was quite big (800-900ms difference between p50 and max values) for all measurements when using the Lambda layer with all dependencies and the same range was much lower when not using Lambda layers at all.
  • When comparing the measurements in this article with measurements with common Lambda layer we observe we got lower cold starts for using all dependencies in the Lambda layers for the first 2 experiments (no SnapStart enabled and SnapStart enabled but no priming applied) and vice when SnapStart is enabled and DynamoDB invocation is primed.
  • The warm starts/execution times of the Lambda function were quite close for all use cases.

So the usage of the Lambda layers (depending what you put there and what you ship as a dependency in your application) adds some unpredictability and you should always do your own measurements!

The above is the detailed content of AWS SnapStart - Part Measuring cold and warm starts with Java using Lambda layer (2). For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?Apr 19, 2025 pm 11:45 PM

Start Spring using IntelliJIDEAUltimate version...

How to elegantly obtain entity class variable names to build database query conditions?How to elegantly obtain entity class variable names to build database query conditions?Apr 19, 2025 pm 11:42 PM

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

How to use the Redis cache solution to efficiently realize the requirements of product ranking list?How to use the Redis cache solution to efficiently realize the requirements of product ranking list?Apr 19, 2025 pm 11:36 PM

How does the Redis caching solution realize the requirements of product ranking list? During the development process, we often need to deal with the requirements of rankings, such as displaying a...

How to safely convert Java objects to arrays?How to safely convert Java objects to arrays?Apr 19, 2025 pm 11:33 PM

Conversion of Java Objects and Arrays: In-depth discussion of the risks and correct methods of cast type conversion Many Java beginners will encounter the conversion of an object into an array...

How do I convert names to numbers to implement sorting and maintain consistency in groups?How do I convert names to numbers to implement sorting and maintain consistency in groups?Apr 19, 2025 pm 11:30 PM

Solutions to convert names to numbers to implement sorting In many application scenarios, users may need to sort in groups, especially in one...

E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?Apr 19, 2025 pm 11:27 PM

Detailed explanation of the design of SKU and SPU tables on e-commerce platforms This article will discuss the database design issues of SKU and SPU in e-commerce platforms, especially how to deal with user-defined sales...

How to set the default run configuration list of SpringBoot projects in Idea for team members to share?How to set the default run configuration list of SpringBoot projects in Idea for team members to share?Apr 19, 2025 pm 11:24 PM

How to set the SpringBoot project default run configuration list in Idea using IntelliJ...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software