Load balancers are crucial in modern software development. If you've ever wondered how requests are distributed across multiple servers, or why certain websites feel faster even during heavy traffic, the answer often lies in efficient load balancing.
In this post, we'll build a simple application load balancer using Round Robin algorithm in Go. The aim of this post is to understand how a load balancer works under the hood, step by step.
What is a Load Balancer?
A load balancer is a system that distributes incoming network traffic across multiple servers. It ensures that no single server bears too much load, preventing bottlenecks and improving the overall user experience. Load balancing approach also ensure that if one server fails, then the traffic can be automatically re-routed to another available server, thus reducing the impact of the failure and increasing availability.
Why do we use Load Balancers?
- High availability: By distributing traffic, load balancers ensure that even if one server fails, traffic can be routed to other healthy servers, making the application more resilient.
- Scalability: Load balancers allow you to scale your system horizontally by adding more servers as traffic increases.
- Efficiency: It maximizes resource utilization by ensuring all servers share the workload equally.
Load balancing algorithms
There are different algorithms and strategies to distribute the traffic:
- Round Robin: One of the simplest methods available. It distributes requests sequentially among the available servers. Once it reaches the last server, it starts again from the beginning.
- Weighted Round Robin: Similar to round robin algorithm except each server is assigned some fixed numerical weighting. This given weight is used to determine the server for routing traffic.
- Least Connections: Routes traffic to the server with the least active connections.
- IP Hashing: Select the server based on the client's IP address.
In this post, we'll focus on implementing a Round Robin load balancer.
What is a Round Robin algorithm?
A round robin algorithm sends each incoming request to the next available server in a circular manner. If server A handles the first request, server B will handle the second, and server C will handle the third. Once all servers have received a request, it starts again from server A.
Now, let's jump into the code and build our load balancer!
Step 1: Define the Load Balancer and Server
type LoadBalancer struct { Current int Mutex sync.Mutex }
We'll first define a simple LoadBalancer struct with a Current field to keep track of which server should handle next request. The Mutex ensures that our code is safe to use concurrently.
Each server we load balance is defined by the Server struct:
type Server struct { URL *url.URL IsHealthy bool Mutex sync.Mutex }
Here, each server has a URL and an IsHealthy flag, which indicates whether the server is available to handle requests.
Step 2: Round Robin Algorithm
The heart of our load balancer is the round robin algorithm. Here's how it works:
func (lb *LoadBalancer) getNextServer(servers []*Server) *Server { lb.Mutex.Lock() defer lb.Mutex.Unlock() for i := 0; i
- This method loops through the list of servers in a round robin fashion. If the selected server is healthy, it returns that server to handle the incoming request.
- We are using Mutex to ensure that only one goroutine can access and modify the Current field of the load balancer at a time. This ensures that the round robin algorithm operates correctly when multiple requests are being processed concurrently.
- Each Server also has its own Mutex. When we check the IsHealthy field, we lock the server's Mutex to prevent concurrent access from multiple goroutines.
- Without Mutex locking it is possible that another goroutine could be changing the value which could result in reading an incorrect or inconsistent data.
- We unlock the Mutex as soon as we have updated the Current field or read the IsHealthy field value to keep the critical section as small as possible. In this way, we are using Mutex to avoid any race condition.
Step 3: Configuring the Load Balancer
Our configuration is stored in a config.json file, which contains the server URLs and health check intervals (more on it in below section).
type Config struct { Port string `json:"port"` HealthCheckInterval string `json:"healthCheckInterval"` Servers []string `json:"servers"` }
The configuration file might look like this:
{ "port": ":8080", "healthCheckInterval": "2s", "servers": [ "http://localhost:5001", "http://localhost:5002", "http://localhost:5003", "http://localhost:5004", "http://localhost:5005" ] }
Step 4: Health Checks
We want to make sure that the servers are healthy before routing any incoming traffic to them. This is done by sending periodic health checks to each server:
func healthCheck(s *Server, healthCheckInterval time.Duration) { for range time.Tick(healthCheckInterval) { res, err := http.Head(s.URL.String()) s.Mutex.Lock() if err != nil || res.StatusCode != http.StatusOK { fmt.Printf("%s is down\n", s.URL) s.IsHealthy = false } else { s.IsHealthy = true } s.Mutex.Unlock() } }
Every few seconds (as specified in the config), the load balancer sends a HEAD request to each server to check if it is healthy. If a server is down, the IsHealthy flag is set to false, preventing future traffic from being routed to it.
Step 5: Reverse Proxy
When the load balancer receives a request, it forwards the request to the next available server using a reverse proxy. In Golang, the httputil package provides a built-in way to handle reverse proxying, and we will use it in our code through the ReverseProxy function:
func (s *Server) ReverseProxy() *httputil.ReverseProxy { return httputil.NewSingleHostReverseProxy(s.URL) }
What is a Reverse Proxy?
A reverse proxy is a server that sits between a client and one or more backend severs. It receives the client's request, forwards it to one of the backend servers, and then returns the server's response to the client. The client interacts with the proxy, unaware of which specific backend server is handling the request.
In our case, the load balancer acts as a reverse proxy, sitting in front of multiple servers and distributing incoming HTTP requests across them.
Step 6: Handling Requests
When a client makes a request to the load balancer, it selects the next available healthy server using the round robin algorithm implementation in getNextServer function and proxies the client request to that server. If no healthy server is available then we send service unavailable error to the client.
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) { server := lb.getNextServer(servers) if server == nil { http.Error(w, "No healthy server available", http.StatusServiceUnavailable) return } w.Header().Add("X-Forwarded-Server", server.URL.String()) server.ReverseProxy().ServeHTTP(w, r) })
The ReverseProxy method proxies the request to the actual server, and we also add a custom header X-Forwarded-Server for debugging purposes (though in production, we should avoid exposing internal server details like this).
Step 7: Starting the Load Balancer
Finally, we start the load balancer on the specified port:
log.Println("Starting load balancer on port", config.Port) err = http.ListenAndServe(config.Port, nil) if err != nil { log.Fatalf("Error starting load balancer: %s\n", err.Error()) }
Working Demo
TL;DR
In this post, we built a basic load balancer from scratch in Golang using a round robin algorithm. This is a simple yet effective way to distribute traffic across multiple servers and ensure that your system can handle higher loads efficiently.
There's a lot more to explore, such as adding sophisticated health checks, implementing different load balancing algorithms, or improving fault tolerance. But this basic example can be a solid foundation to build upon.
You can find the source code in this GitHub repo.
The above is the detailed content of Building a simple load balancer in Go. For more information, please follow other related articles on the PHP Chinese website!

Go uses the "encoding/binary" package for binary encoding and decoding. 1) This package provides binary.Write and binary.Read functions for writing and reading data. 2) Pay attention to choosing the correct endian (such as BigEndian or LittleEndian). 3) Data alignment and error handling are also key to ensure the correctness and performance of the data.

The"bytes"packageinGooffersefficientfunctionsformanipulatingbyteslices.1)Usebytes.Joinforconcatenatingslices,2)bytes.Bufferforincrementalwriting,3)bytes.Indexorbytes.IndexByteforsearching,4)bytes.Readerforreadinginchunks,and5)bytes.SplitNor

Theencoding/binarypackageinGoiseffectiveforoptimizingbinaryoperationsduetoitssupportforendiannessandefficientdatahandling.Toenhanceperformance:1)Usebinary.NativeEndianfornativeendiannesstoavoidbyteswapping.2)BatchReadandWriteoperationstoreduceI/Oover

Go's bytes package is mainly used to efficiently process byte slices. 1) Using bytes.Buffer can efficiently perform string splicing to avoid unnecessary memory allocation. 2) The bytes.Equal function is used to quickly compare byte slices. 3) The bytes.Index, bytes.Split and bytes.ReplaceAll functions can be used to search and manipulate byte slices, but performance issues need to be paid attention to.

The byte package provides a variety of functions to efficiently process byte slices. 1) Use bytes.Contains to check the byte sequence. 2) Use bytes.Split to split byte slices. 3) Replace the byte sequence bytes.Replace. 4) Use bytes.Join to connect multiple byte slices. 5) Use bytes.Buffer to build data. 6) Combined bytes.Map for error processing and data verification.

Go's encoding/binary package is a tool for processing binary data. 1) It supports small-endian and large-endian endian byte order and can be used in network protocols and file formats. 2) The encoding and decoding of complex structures can be handled through Read and Write functions. 3) Pay attention to the consistency of byte order and data type when using it, especially when data is transmitted between different systems. This package is suitable for efficient processing of binary data, but requires careful management of byte slices and lengths.

The"bytes"packageinGoisessentialbecauseitoffersefficientoperationsonbyteslices,crucialforbinarydatahandling,textprocessing,andnetworkcommunications.Byteslicesaremutable,allowingforperformance-enhancingin-placemodifications,makingthispackage

Go'sstringspackageincludesessentialfunctionslikeContains,TrimSpace,Split,andReplaceAll.1)Containsefficientlychecksforsubstrings.2)TrimSpaceremoveswhitespacetoensuredataintegrity.3)SplitparsesstructuredtextlikeCSV.4)ReplaceAlltransformstextaccordingto


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
