The Fibonacci Series in C# in the Fibonacci series is one of the famous sequence series. The sequence is 0, 1, 1, 2, 3, 5, 8…. The Fibonacci series starts from zero and one and the next number is the sum of two preceding numbers. It has been said that the Fibonacci Series created by Mr.Leonardo Pisano Bigollo in the 13th century. Fibonacci series is useful for some scenarios. Basically it was originally used to solve the rabbit problem i.e. The number of rabbits born from a pair. There are other problems also in which the Fibonacci sequence is useful.
Fibonacci Series Logic
As in the Fibonacci series, the number is the sum of its two preceding numbers. So if we have a Fibonacci series say 0, 1, 1, 2, 3, 5, 8, 13, 21… According to this next number would be the sum of its preceding two like 13 and 21. So the next number is 13+21=34.
Here is the logic for generating Fibonacci series
F(n)= F(n-1) +F(n-2)
Where F(n) is term number and F(n-1) +F(n-2) is a sum of preceding values.
So if we have series 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…
According to the logic F(n)= F(n-1) +F(n-2)
F(n)= 55+89
F(n)= 144
The next term would be 144.
Various Method of creating Fibonacci Series
Fibonacci series can be generated in multiple ways.
1. Iterative Approach
This way is the easiest way to generate series.
Code:
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespaceFibonacciDemo { classProgram { staticint Fibonacci(int n) { intfirstnumber = 0, secondnumber = 1, result = 0; if (n == 0) return 0; //It will return the first number of the series if (n == 1) return 1; // it will return the second number of the series for (int i = 2; i <h4 id="Recursive-Method">2. Recursive Method</h4> <p>This is another method to solve this problem.</p> <p><strong>Method 1</strong></p> <pre class="brush:php;toolbar:false">using System; using System.Collections.Generic; using System.Linq; using System.Text; namespaceFibonacciDemo { classProgram { staticint Fibonacci(int n) { intfirstnumber = 0, secondnumber = 1, result = 0; if (n == 0) return 0; //it will return the first number of the series if (n == 1) return 1; // it will return the second number of the series return Fibonacci(n-1) + Fibonacci(n-2); } staticvoid Main(string[] args) { Console.Write("Length of the Fibonacci Series: "); int length = Convert.ToInt32(Console.ReadLine()); for(int i = 0; i <p><strong>Method 2</strong></p> <pre class="brush:php;toolbar:false">using System.Collections.Generic; using System.Linq; using System.Text; namespace FibonacciSeries { class Program { public static void Fibonacci ( int firstnumber, int secondnumber, int count, int length, ) { if (count <p><strong>Output:</strong></p> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/172534888671954.png?x-oss-process=image/resize,p_40" class="lazy" alt="Fibonacci Series in C#" ></p> <h4 id="Fibonacci-by-using-Array">3. Fibonacci by using Array</h4> <p><strong>Code:</strong></p> <pre class="brush:php;toolbar:false">using System; using System.Collections.Generic; using System.Linq; using System.Text; public class Program { public static int[] Fibonacci(int number) { int[] a = new int[number]; a[0] = 0; a[1] = 1; for (int i = 2; i <p><strong>Output:</strong></p> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/172534888856434.png?x-oss-process=image/resize,p_40" class="lazy" alt="Fibonacci Series in C#" ></p> <h3 id="How-to-find-the-Nth-Term-of-Fibonacci-Series">How to find the Nth Term of Fibonacci Series?</h3> <p>Following are the methods</p> <h4 id="Method">Method 1</h4> <p><strong>Code:</strong></p> <pre class="brush:php;toolbar:false">using System; namespace FibonacciSeries { class Program { public static int NthTerm(int n) { if ((n == 0) || (n == 1)) { return n; } else { return (NthTerm(n - 1) + NthTerm(n - 2)); } } public static void Main(string[] args) { Console.Write("Enter the nth term of the Fibonacci Series: "); int number = Convert.ToInt32(Console.ReadLine()); number = number - 1; Console.Write(NthTerm(number)); Console.ReadKey(); } } }
The above code is to find the nth term in the Fibonacci series. For example, if we want to find the 12th term in the series then the result would be 89.
Method 2
(O(Log t) Time).
There is one another recurrence formula that can be used to find t’th Fibonacci Number If t is even then = t/2:
F(t) = [2*F(k-1) + F(k)]*F(k)
If t is odd then k = (t + 1)/2
F(t) = F(k)*F(k) + F(k-1)*F(k-1)
Fibonacci matrix
After getting determinant, we will get (-1)t = Ft+1Ft-1 – Ft2
FmFt + Fm-1Ft-1 = Fm+t-1
By putting t = t+1,
FmFt+1 + Fm-1Ft = Fm+t
Putting m = t
F2t-1 = Ft2 + Ft-12
F2t = (Ft-1 + Ft+1)Ft = (2Ft-1 + Ft)Ft
To get the formula we will do the following
If t is even, put k = t/2
If t is odd, put k = (t+1)/2
So by sorting these numbers we can prevent the constantly using memory space of STACK. It gives time complexity of O(n). The recursive algorithm is less efficient.
Code:
int f(n) : if( n==0 || n==1 ) return n; else return f(n-1) + f(n-2)
Now when the above algorithm run for n=4
fn(4)
f(3) f(2)
f(2) f(1) f(1) f(0)
f(1) f(0)
So it’s a tree. For calculating f(4) we need to calculate f(3) and f(2) and so on.For a small value of 4, f(2) is calculated twice and f(1) is calculated thrice. This number of additions will grows for large numbers.
There is a conjecture that the number of additions required for calculating f (n) is f (n+1) -1.
Conclusion
Here the iteration method is always preferred because it has a faster approach to solve this kind of problem. Here we are storing the first and the second number of Fibonacci series in the previous number and previous number(these are two variables) and also we are using the current number to store the Fibonacci number.
The above is the detailed content of Fibonacci Series in C#. For more information, please follow other related articles on the PHP Chinese website!

如何使用C#编写时间序列预测算法时间序列预测是一种通过分析过去的数据来预测未来数据趋势的方法。它在很多领域,如金融、销售和天气预报中有广泛的应用。在本文中,我们将介绍如何使用C#编写时间序列预测算法,并附上具体的代码示例。数据准备在进行时间序列预测之前,首先需要准备好数据。一般来说,时间序列数据应该具有足够的长度,并且是按照时间顺序排列的。你可以从数据库或者

如何使用Redis和C#开发分布式事务功能引言分布式系统的开发中,事务处理是一项非常重要的功能。事务处理能够保证在分布式系统中的一系列操作要么全部成功,要么全部回滚。Redis是一种高性能的键值存储数据库,而C#是一种广泛应用于开发分布式系统的编程语言。本文将介绍如何使用Redis和C#来实现分布式事务功能,并提供具体代码示例。I.Redis事务Redis

如何实现C#中的人脸识别算法人脸识别算法是计算机视觉领域中的一个重要研究方向,它可以用于识别和验证人脸,广泛应用于安全监控、人脸支付、人脸解锁等领域。在本文中,我们将介绍如何使用C#来实现人脸识别算法,并提供具体的代码示例。实现人脸识别算法的第一步是获取图像数据。在C#中,我们可以使用EmguCV库(OpenCV的C#封装)来处理图像。首先,我们需要在项目

Redis在C#开发中的应用:如何实现高效的缓存更新引言:在Web开发中,缓存是提高系统性能的常用手段之一。而Redis作为一款高性能的Key-Value存储系统,能够提供快速的缓存操作,为我们的应用带来了不少便利。本文将介绍如何在C#开发中使用Redis,实现高效的缓存更新。Redis的安装与配置在开始之前,我们需要先安装Redis并进行相应的配置。你可以

如何使用C#编写动态规划算法摘要:动态规划是求解最优化问题的一种常用算法,适用于多种场景。本文将介绍如何使用C#编写动态规划算法,并提供具体的代码示例。一、什么是动态规划算法动态规划(DynamicProgramming,简称DP)是一种用来求解具有重叠子问题和最优子结构性质的问题的算法思想。动态规划将问题分解成若干个子问题来求解,通过记录每个子问题的解,

如何实现C#中的图像压缩算法摘要:图像压缩是图像处理领域中的一个重要研究方向,本文将介绍在C#中实现图像压缩的算法,并给出相应的代码示例。引言:随着数字图像的广泛应用,图像压缩成为了图像处理中的重要环节。压缩能够减小存储空间和传输带宽,并能提高图像处理的效率。在C#语言中,我们可以通过使用各种图像压缩算法来实现对图像的压缩。本文将介绍两种常见的图像压缩算法:

C#开发中如何处理跨域请求和安全性问题在现代的网络应用开发中,跨域请求和安全性问题是开发人员经常面临的挑战。为了提供更好的用户体验和功能,应用程序经常需要与其他域或服务器进行交互。然而,浏览器的同源策略导致了这些跨域请求被阻止,因此需要采取一些措施来处理跨域请求。同时,为了保证数据的安全性,开发人员还需要考虑一些安全性问题。本文将探讨C#开发中如何处理跨域请

如何在C#中实现遗传算法引言:遗传算法是一种模拟自然选择和基因遗传机制的优化算法,其主要思想是通过模拟生物进化的过程来搜索最优解。在计算机科学领域,遗传算法被广泛应用于优化问题的解决,例如机器学习、参数优化、组合优化等。本文将介绍如何在C#中实现遗传算法,并提供具体的代码示例。一、遗传算法的基本原理遗传算法通过使用编码表示解空间中的候选解,并利用选择、交叉和


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
