In the article Destructor in C# as the name suggests, destructors are the methods in C# which destroy the objects. If the objects are no longer required, then the destructor is called to destroy those objects from the class. The destructor will invoke automatically by the garbage collector and destroys objects.
Syntax:
class Demo { // other methods ~Demo() // destructor { // your code } }
C# destructor is a shortcut of Finalize( ) method. So when you declare destructor
~Demo() // destructor { // your code }
C# compiler will translate it to:
protected override void Finalize() { try { // your code } finally { base.Finalize(); } }
Destructor is represented by ~ (tilde).
Properties of Destructor in C#
The following are the properties of destructor:
- Destructors cannot have any parameters and access modifiers.
- Each class should consist of only one destructor.
- Destructors cannot be overloaded or inherited.
- The destructor name is always the same as the class name and has no return type.
- Destructor uses the Finalize method and invoked by Garbage Collector when objects are no longer required.
- Destructor follows the reverse pattern. In the destructor, the derived class is called first and then base class.
How does Destructor work in C#?
Here are some examples which show how it works in C#.
Example #1
Code:
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Destructor { class person { //variables public string name; public int age; public person(string name,int age) //parametrized constructor { this.name = name; this.age = age; } public string getName() { return this.name; } public int getAge() { return this.age; } ~person() // destructor { Console.WriteLine("Destructor has been invoked"); } } class Program { // main method static void Main(string[] args) { person Details = new person("Joe", 28); Console.WriteLine(Details.getName()); Console.WriteLine(Details.getAge()); } } }
In the above example, the parameterized constructor is initialized with parameter name and age where this is a keyword referring to class variables. After that destructor is created with the same name as the class name and symbol ~. In the main method, there is an object of the class person. After getting a person’s name and age, objects are no longer required. So destructor is being called which destroys the objects and de-allocate their memories.
Output:
Example #2
Code:
using System; using System.Collections.Generic; using System.Linq; using System.Text; anmespace Destructor { class person { // variables public string name; public int age; public person(string name,int age) // parameterized constructor { this.name = name; this.age = age; } public string getName() { return this.name; } public int getAge() { return this.age; } ~person() //destructor { Console.WriteLine("Descructor has been invoked"); } } class Program { // Main method static void Main(string[] args) { person Details = new person("Joe", 28); // first object person Details1 = new person("John", 20); Console.WriteLine(Details.getName()); Console.WriteLine(Details.getAge()); Console.WriteLine(Details1.getName()); Console.WriteLine(Details1.getAge()); } } }
This example is almost the same as the previous example, but in this example, there are two objects in the main method. As we know, the constructor runs for every object and this same thing is applied to the destructor also. In this case, the destructor is being called two times and de-allocates the memory of each object.
Output:
Example #3
Code:
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Destructor { public class Parent { ~Parent() // base destructor { Console.WriteLine("Parent.~Parent()"); } } public class Child : Parent { ~Child() // derived destructor { Console.WriteLine("Child.~Child()"); } } public class MainClass { static void Main() { Child child = new Child(); } } }
In the above example, the parent class is defined which has a destructor. Then the child class inherits parent class and consists of a destructor too. So child destructor automatically calls the base destructor.
In constructors, the base constructor is called first. For example, if we have base class A which is inherited by class B so in case of constructor class A is called first and then class B. However, in the case of destructor class B (derived class) is called first before class A (base class).
Another example of order execution:-
Code:
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Destructor { class Tree { ~Tree() { System.Console.WriteLine("This is the first destructor"); } } class Branch: Tree { ~Branch() { System.Console.WriteLine("This is the second destructor"); } } class Flower: Branch { ~Flower() { System.Console.WriteLine("This is the third destructor"); } } class Test { static void Main() { Flower f= new Flower(); } } }
Output:
As you can see, the third constructor is called initially followed by the second and the first.
Example #4
Code:
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Destructor { class Example { public Example() { // constructor Console.WriteLine("Object Created"); } // Destructor ~Example() { Console.WriteLine("Object Destroyed"); } } class Program { public static void Sample() { Example ex = new Example(); } static void Main(string[] args) { Sample(); GC.Collect(); Console.ReadLine(); } } }
Output:
Destructor de-allocates the memory of the object if they are not required at the end of the program. But sometimes if we use GC.Collect() in the middle of program execution, it will destroy objects in the middle and de-allocates the memory of those objects. Destructor can be called implicitly or explicitly. But there is no need to destroy the objects explicitly as C# provides garbage collection. However, when you are done with the unmanaged resources, you will need to free them explicitly. There is no need to called or case of managed resources. Use destructor for handling unmanaged resources. A garbage Collector will call a destructor as it consists of a list of objects that have a destructor. So whenever an object is created or destroyed, that list is updated. If there is an object in the queue, it is collected by the garbage collector after the destructor executes.
Conclusion
The main purpose of the destructor is to free the memory of objects after their execution. So there are different actions executed in the destructor like recovering the space, releasing network resources and resource locks, etc. Destructors should be used to release unmanaged resources rather than managed resources.
Recommended Article
This has been a guide to Destructor in C#. Here we discuss the introduction, properties as well as Examples of Destructor in C#. You can also go through our other suggested articles to learn more –
- Destructor in Java
- Inheritance in C#
- Copy Constructor in C#
- Destructor in Python
The above is the detailed content of Destructor in C#. For more information, please follow other related articles on the PHP Chinese website!

C# plays a core role in the .NET ecosystem and is the preferred language for developers. 1) C# provides efficient and easy-to-use programming methods, combining the advantages of C, C and Java. 2) Execute through .NET runtime (CLR) to ensure efficient cross-platform operation. 3) C# supports basic to advanced usage, such as LINQ and asynchronous programming. 4) Optimization and best practices include using StringBuilder and asynchronous programming to improve performance and maintainability.

C# is a programming language released by Microsoft in 2000, aiming to combine the power of C and the simplicity of Java. 1.C# is a type-safe, object-oriented programming language that supports encapsulation, inheritance and polymorphism. 2. The compilation process of C# converts the code into an intermediate language (IL), and then compiles it into machine code execution in the .NET runtime environment (CLR). 3. The basic usage of C# includes variable declarations, control flows and function definitions, while advanced usages cover asynchronous programming, LINQ and delegates, etc. 4. Common errors include type mismatch and null reference exceptions, which can be debugged through debugger, exception handling and logging. 5. Performance optimization suggestions include the use of LINQ, asynchronous programming, and improving code readability.

C# is a programming language, while .NET is a software framework. 1.C# is developed by Microsoft and is suitable for multi-platform development. 2..NET provides class libraries and runtime environments, and supports multilingual. The two work together to build modern applications.

C#.NET is a powerful development platform that combines the advantages of the C# language and .NET framework. 1) It is widely used in enterprise applications, web development, game development and mobile application development. 2) C# code is compiled into an intermediate language and is executed by the .NET runtime environment, supporting garbage collection, type safety and LINQ queries. 3) Examples of usage include basic console output and advanced LINQ queries. 4) Common errors such as empty references and type conversion errors can be solved through debuggers and logging. 5) Performance optimization suggestions include asynchronous programming and optimization of LINQ queries. 6) Despite the competition, C#.NET maintains its important position through continuous innovation.

The future trends of C#.NET are mainly focused on three aspects: cloud computing, microservices, AI and machine learning integration, and cross-platform development. 1) Cloud computing and microservices: C#.NET optimizes cloud environment performance through the Azure platform and supports the construction of an efficient microservice architecture. 2) Integration of AI and machine learning: With the help of the ML.NET library, C# developers can embed machine learning models in their applications to promote the development of intelligent applications. 3) Cross-platform development: Through .NETCore and .NET5, C# applications can run on Windows, Linux and macOS, expanding the deployment scope.

The latest developments and best practices in C#.NET development include: 1. Asynchronous programming improves application responsiveness, and simplifies non-blocking code using async and await keywords; 2. LINQ provides powerful query functions, efficiently manipulating data through delayed execution and expression trees; 3. Performance optimization suggestions include using asynchronous programming, optimizing LINQ queries, rationally managing memory, improving code readability and maintenance, and writing unit tests.

How to build applications using .NET? Building applications using .NET can be achieved through the following steps: 1) Understand the basics of .NET, including C# language and cross-platform development support; 2) Learn core concepts such as components and working principles of the .NET ecosystem; 3) Master basic and advanced usage, from simple console applications to complex WebAPIs and database operations; 4) Be familiar with common errors and debugging techniques, such as configuration and database connection issues; 5) Application performance optimization and best practices, such as asynchronous programming and caching.

C# is widely used in enterprise-level applications, game development, mobile applications and web development. 1) In enterprise-level applications, C# is often used for ASP.NETCore to develop WebAPI. 2) In game development, C# is combined with the Unity engine to realize role control and other functions. 3) C# supports polymorphism and asynchronous programming to improve code flexibility and application performance.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Atom editor mac version download
The most popular open source editor
