search
HomeBackend DevelopmentPython TutorialShallow Copy vs Deep Copy – What Are They Really? - Examples with JavaScript and Python

Introduction

In the world of programming, copying data is a common task. However, not all copies are created equal. Two terms that often appear are shallow copy and deep copy. Understanding the difference between them is crucial to avoid errors that can be difficult to detect.

What is a Shallow Copy?

A shallow copy copies only the first level of an object, leaving references to the original data at deeper levels. This means that if the original object has other objects inside it (nested), shallow copy will only copy the references to those objects, not the objects themselves.

Example in JavaScript

const originalArray = [1, 2, [3, 4]];
const shallowCopy = originalArray.slice();

shallowCopy[2][0] = 99;

console.log(originalArray); // [1, 2, [99, 4]]
console.log(shallowCopy);   // [1, 2, [99, 4]]

Example in Python

import copy

original_list = [1, 2, [3, 4]]
shallow_copy = copy.copy(original_list)

shallow_copy[2][0] = 99

print(original_list)  # [1, 2, [99, 4]]
print(shallow_copy)   # [1, 2, [99, 4]]

Tip:

A shallow copy is useful when you know you don't need to modify nested objects. It is faster and consumes less memory than a deep copy.

Note:

In JavaScript, if you use Array.slice() or Object.assign(), you are doing shallow copy!

What is a Deep Copy?

A deep copy copies all levels of an object, duplicating even nested structures. This means that any changes made to the copy will not affect the original object.

Example in JavaScript

const originalArray = [1, 2, [3, 4]];
const deepCopy = JSON.parse(JSON.stringify(originalArray));

deepCopy[2][0] = 99;

console.log(originalArray); // [1, 2, [3, 4]]
console.log(deepCopy);      // [1, 2, [99, 4]]

Example in Python

import copy

original_list = [1, 2, [3, 4]]
deep_copy = copy.deepcopy(original_list)

deep_copy[2][0] = 99

print(original_list)  # [1, 2, [3, 4]]
print(deep_copy)      # [1, 2, [99, 4]]

Tip:

If you are working with complex or nested data structures, deep copy is the safest option to avoid unwanted side effects.

Note:

In Python, copy.deepcopy() is your friend when you need to safely duplicate complex objects.

Direct Comparison: Shallow Copy vs Deep Copy

Here is a direct comparison between shallow copy and deep copy:

Característica Shallow Copy Deep Copy
Copia superficial No
Copia profunda No
Modificaciones al objeto original afectan la copia No
Complejidad Baja Alta

Tip:

Recuerda, una shallow copy es más rápida, pero una deep copy es más segura cuando trabajas con objetos complejos.

Casos de Uso Comunes

Cuándo Usar Shallow Copy

  • Cuando trabajas con objetos o estructuras de datos simples.
  • Cuando necesitas mejorar el rendimiento y las modificaciones profundas no son un problema.
  • Ejemplos: Configuraciones de aplicaciones, duplicación de datos temporales.

Cuándo Usar Deep Copy

  • Cuando trabajas con estructuras de datos anidadas o complejas.
  • Cuando necesitas asegurarte de que los cambios en la copia no afecten el original.
  • Ejemplos: Manipulación de datos complejos, aplicaciones que requieren alta seguridad y consistencia.

Nota:

¡Las shallow copies son geniales para duplicar configuraciones de aplicaciones ligeras o datos temporales!

Problemas Comunes y Cómo Evitarlos

Problemas con Shallow Copy

Un error común es usar una shallow copy en lugar de una deep copy cuando los datos son anidados. Esto puede llevar a modificaciones no deseadas en el objeto original.

Ejemplo:

const originalArray = [1, 2, [3, 4]];
const shallowCopy = originalArray.slice();

shallowCopy[2][0] = 99;

console.log(originalArray); // [1, 2, [99, 4]] (¡No esperado!)

Tip:

Siempre verifica si tu objeto tiene niveles anidados antes de decidir entre una shallow o deep copy.

Herramientas y Funciones para Realizar Copias en JavaScript

Uso de Object.assign() para Shallow Copy

const originalObject = { a: 1, b: { c: 2 } };
const shallowCopy = Object.assign({}, originalObject);

Uso de ...spread para Shallow Copy

const originalArray = [1, 2, 3];
const shallowCopy = [...originalArray];

Uso de structuredClone() para Deep Copy

const originalObject = { a: 1, b: { c: 2 } };
const deepCopy = structuredClone(originalObject);

Tip:

structuredClone() es perfecto para copiar estructuras complejas o circulares sin romper tu cabeza.

Uso de Librerías como Lodash para Deep Copy

const _ = require('lodash');
const originalObject = { a: 1, b: { c: 2 } };
const deepCopy = _.cloneDeep(originalObject);

Herramientas y Funciones para Realizar Copias en Python

Uso del Módulo copy

import copy

original_list = [1, 2, [3, 4]]
shallow_copy = copy.copy(original_list)
deep_copy = copy.deepcopy(original_list)

Diferencias entre copy.copy() y copy.deepcopy()

  • copy.copy(): Shallow copy.
  • copy.deepcopy(): Deep copy.

Nota:

¡En Python, una copia superficial a veces es todo lo que necesitas para evitar cambios accidentales en tus listas!

Resumen y Conclusión

En resumen, tanto las shallow copies como las deep copies tienen sus usos. La clave es entender la estructura de los datos con los que estás trabajando y elegir el método de copia adecuado.

FAQs

1. ¿Es shallow copy siempre más rápida que deep copy?

Sí, debido a que copia menos datos.

2. ¿Se puede hacer una deep copy sin librerías externas en JavaScript?

Sí, con JSON.parse(JSON.stringify()) o structuredClone().

3. ¿Qué sucede si intento modificar un objeto anidado en una shallow copy?

El objeto original también se verá afectado.

4. ¿Es mejor usar siempre deep copy para evitar problemas?

No necesariamente, solo cuando trabajas con estructuras de datos complejas.

5. ¿Qué ventajas tiene structuredClone() frente a otros métodos de deep copy en JavaScript?

Es nativo, soporta estructuras circulares y es más eficiente que JSON.parse(JSON.stringify()), además de que permite transferir por completo los valores de un objeto a otro.


¡Los errores al usar copias superficiales en lugar de profundas son más comunes de lo que piensas! Espero que esta pequeña guía te ayude a evitar cualquier problema a la hora de copiar datos.

Déjame saber en los comentarios, ¿ya conocías las deep y shallow copies y has tenido problema alguna vez debido a ellas?


Shallow Copy vs Deep Copy - ¿Qué son realmente? - Ejemplos con JavaScript y Python

La libreta de BYXN ? | Substack

¡Mi libreta de apuntes pública! ???. Click to read La libreta de BYXN ?, a Substack publication. Launched 17 days ago.

Shallow Copy vs Deep Copy - ¿Qué son realmente? - Ejemplos con JavaScript y Python bhyxen.substack.com

Photo by Mohammad Rahmani on Unsplash

The above is the detailed content of Shallow Copy vs Deep Copy – What Are They Really? - Examples with JavaScript and Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to solve the permissions problem encountered when viewing Python version in Linux terminal?How to solve the permissions problem encountered when viewing Python version in Linux terminal?Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools