Home  >  Article  >  Web Front-end  >  Solar system with Three.js

Solar system with Three.js

WBOY
WBOYOriginal
2024-08-22 18:57:42775browse

Hi! Today, I’m going to build a solar system using Three.js. But before we begin, you should know that the inspiration for this article came from a client's representative whose project I’m currently working on. Yes, that's you—the one who believes the Earth is flat.

JavaScript/Node has largest ecosystem of libraries that cover enormous amount of feature that simplifies your development, so I always can choose which one is better for you purpose. However If we are talking about 3D graphics there is not that much cool options and three.js is probably the best amoug them all and has the biggest comunity.

So let's dive in Three.js and build the Solar system using it. In this article I will cover:

  • Init Project and Scene
  • Creating Sun
  • Creating Planets
  • Deploying to GitHub Pages

Init Project and Scene

First things first: to initialize the project, I'm using Vite and installing the Three.js dependency. Now, the question is how to set up Three.js. For this, you'll need three things: a scene, a camera, and a renderer. I'm also using the built-in addon, OrbitControls, which allows me to navigate within the scene. After starting the app, a black screen should appear.

import { Scene, WebGLRenderer, PerspectiveCamera } from "three";
import { OrbitControls } from "three/addons/controls/OrbitControls.js";

const w = window.innerWidth;
const h = window.innerHeight;

const scene = new Scene();
const camera = new PerspectiveCamera(75, w / h, 0.1, 100);
const renderer = new WebGLRenderer();
const controls = new OrbitControls(camera, renderer.domElement);

controls.minDistance = 10;
controls.maxDistance = 60;
camera.position.set(30 * Math.cos(Math.PI / 6), 30 * Math.sin(Math.PI / 6), 40);

renderer.setSize(w, h);
document.body.appendChild(renderer.domElement);

renderer.render(scene, camera);

window.addEventListener("resize", () => {
  const w = window.innerWidth;
  const h = window.innerHeight;
  renderer.setSize(w, h);
  camera.aspect = w / h;
  camera.updateProjectionMatrix();
});

const animate = () => {
  requestAnimationFrame(animate);
  controls.update();
  renderer.render(scene, camera);
};

animate();

You may notice that I'm limiting the zoom via controls and also changing the default angle of the camera. This will be helpful for properly displaying the scene in the next steps.

Now it’s time to add a simple starfield since our solar system should be surrounded by stars. To simplify the explanation, imagine you have a sphere, and you pick 1,000 random points on this sphere. Then, you create stars from these points by mapping a star texture onto them. Finally, I’m adding animation to make all these points spin around the y-axis. With this, the starfield is ready to be added to the scene.

import {
  Group,
  Color,
  Points,
  Vector3,
  TextureLoader,
  PointsMaterial,
  BufferGeometry,
  AdditiveBlending,
  Float32BufferAttribute,
} from "three";

export class Starfield {
  group;
  loader;
  animate;

  constructor({ numStars = 1000 } = {}) {
    this.numStars = numStars;

    this.group = new Group();
    this.loader = new TextureLoader();

    this.createStarfield();

    this.animate = this.createAnimateFunction();
    this.animate();
  }

  createStarfield() {
    let col;
    const verts = [];
    const colors = [];
    const positions = [];

    for (let i = 0; i < this.numStars; i += 1) {
      let p = this.getRandomSpherePoint();
      const { pos, hue } = p;
      positions.push(p);
      col = new Color().setHSL(hue, 0.2, Math.random());
      verts.push(pos.x, pos.y, pos.z);
      colors.push(col.r, col.g, col.b);
    }

    const geo = new BufferGeometry();
    geo.setAttribute("position", new Float32BufferAttribute(verts, 3));
    geo.setAttribute("color", new Float32BufferAttribute(colors, 3));
    const mat = new PointsMaterial({
      size: 0.2,
      alphaTest: 0.5,
      transparent: true,
      vertexColors: true,
      blending: AdditiveBlending,
      map: this.loader.load("/solar-system-threejs/assets/circle.png"),
    });
    const points = new Points(geo, mat);
    this.group.add(points);
  }

  getRandomSpherePoint() {
    const radius = Math.random() * 25 + 25;
    const u = Math.random();
    const v = Math.random();
    const theta = 2 * Math.PI * u;
    const phi = Math.acos(2 * v - 1);
    let x = radius * Math.sin(phi) * Math.cos(theta);
    let y = radius * Math.sin(phi) * Math.sin(theta);
    let z = radius * Math.cos(phi);

    return {
      pos: new Vector3(x, y, z),
      hue: 0.6,
      minDist: radius,
    };
  }

  createAnimateFunction() {
    return () => {
      requestAnimationFrame(this.animate);
      this.group.rotation.y += 0.00005;
    };
  }

  getStarfield() {
    return this.group;
  }
}

Adding the starfield is easy, just by using add method in scene class

const starfield = new Starfield().getStarfield();
scene.add(starfield);

As for the textures, you can find all the textures used in this project inside the repository, which is linked at the end of the article. Most of the textures were taken from this site, with the exceptions being the star and planets' rings textures.


Creating Sun

For the sun, I used Icosahedron geometry and mapped a texture onto it. Using Improved Noise, I achieved an effect where the sun pulses, simulating the way a real star emits streams of energy into space. The sun isn't just a figure with a mapped texture; it also needs to be a light source in the scene, so I'm using PointLight to simulate this.

import {
  Mesh,
  Group,
  Color,
  Vector3,
  BackSide,
  PointLight,
  TextureLoader,
  ShaderMaterial,
  AdditiveBlending,
  DynamicDrawUsage,
  MeshBasicMaterial,
  IcosahedronGeometry,
} from "three";
import { ImprovedNoise } from "three/addons/math/ImprovedNoise.js";

export class Sun {
  group;
  loader;
  animate;
  corona;
  sunRim;
  glow;

  constructor() {
    this.sunTexture = "/solar-system-threejs/assets/sun-map.jpg";

    this.group = new Group();
    this.loader = new TextureLoader();

    this.createCorona();
    this.createRim();
    this.addLighting();
    this.createGlow();
    this.createSun();

    this.animate = this.createAnimateFunction();
    this.animate();
  }

  createSun() {
    const map = this.loader.load(this.sunTexture);
    const sunGeometry = new IcosahedronGeometry(5, 12);
    const sunMaterial = new MeshBasicMaterial({
      map,
      emissive: new Color(0xffff99),
      emissiveIntensity: 1.5,
    });
    const sunMesh = new Mesh(sunGeometry, sunMaterial);
    this.group.add(sunMesh);

    this.group.add(this.sunRim);

    this.group.add(this.corona);

    this.group.add(this.glow);

    this.group.userData.update = (t) => {
      this.group.rotation.y = -t / 5;
      this.corona.userData.update(t);
    };
  }

  createCorona() {
    const coronaGeometry = new IcosahedronGeometry(4.9, 12);
    const coronaMaterial = new MeshBasicMaterial({
      color: 0xff0000,
      side: BackSide,
    });
    const coronaMesh = new Mesh(coronaGeometry, coronaMaterial);
    const coronaNoise = new ImprovedNoise();

    let v3 = new Vector3();
    let p = new Vector3();
    let pos = coronaGeometry.attributes.position;
    pos.usage = DynamicDrawUsage;
    const len = pos.count;

    const update = (t) => {
      for (let i = 0; i < len; i += 1) {
        p.fromBufferAttribute(pos, i).normalize();
        v3.copy(p).multiplyScalar(5);
        let ns = coronaNoise.noise(
          v3.x + Math.cos(t),
          v3.y + Math.sin(t),
          v3.z + t
        );
        v3.copy(p)
          .setLength(5)
          .addScaledVector(p, ns * 0.4);
        pos.setXYZ(i, v3.x, v3.y, v3.z);
      }
      pos.needsUpdate = true;
    };

    coronaMesh.userData.update = update;
    this.corona = coronaMesh;
  }

  createGlow() {
    const uniforms = {
      color1: { value: new Color(0x000000) },
      color2: { value: new Color(0xff0000) },
      fresnelBias: { value: 0.2 },
      fresnelScale: { value: 1.5 },
      fresnelPower: { value: 4.0 },
    };

    const vertexShader = `
    uniform float fresnelBias;
    uniform float fresnelScale;
    uniform float fresnelPower;

    varying float vReflectionFactor;

    void main() {
      vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
      vec4 worldPosition = modelMatrix * vec4( position, 1.0 );

      vec3 worldNormal = normalize( mat3( modelMatrix[0].xyz, modelMatrix[1].xyz, modelMatrix[2].xyz ) * normal );

      vec3 I = worldPosition.xyz - cameraPosition;

      vReflectionFactor = fresnelBias + fresnelScale * pow( 1.0 + dot( normalize( I ), worldNormal ), fresnelPower );

      gl_Position = projectionMatrix * mvPosition;
    }
    `;

    const fragmentShader = `
      uniform vec3 color1;
      uniform vec3 color2;

      varying float vReflectionFactor;

      void main() {
        float f = clamp( vReflectionFactor, 0.0, 1.0 );
        gl_FragColor = vec4(mix(color2, color1, vec3(f)), f);
      }
    `;

    const sunGlowMaterial = new ShaderMaterial({
      uniforms,
      vertexShader,
      fragmentShader,
      transparent: true,
      blending: AdditiveBlending,
    });
    const sunGlowGeometry = new IcosahedronGeometry(5, 12);
    const sunGlowMesh = new Mesh(sunGlowGeometry, sunGlowMaterial);
    sunGlowMesh.scale.setScalar(1.1);
    this.glow = sunGlowMesh;
  }

  createRim() {
    const uniforms = {
      color1: { value: new Color(0xffff99) },
      color2: { value: new Color(0x000000) },
      fresnelBias: { value: 0.2 },
      fresnelScale: { value: 1.5 },
      fresnelPower: { value: 4.0 },
    };

    const vertexShader = `
    uniform float fresnelBias;
    uniform float fresnelScale;
    uniform float fresnelPower;

    varying float vReflectionFactor;

    void main() {
      vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
      vec4 worldPosition = modelMatrix * vec4( position, 1.0 );

      vec3 worldNormal = normalize( mat3( modelMatrix[0].xyz, modelMatrix[1].xyz, modelMatrix[2].xyz ) * normal );

      vec3 I = worldPosition.xyz - cameraPosition;

      vReflectionFactor = fresnelBias + fresnelScale * pow( 1.0 + dot( normalize( I ), worldNormal ), fresnelPower );

      gl_Position = projectionMatrix * mvPosition;
    }
    `;
    const fragmentShader = `
    uniform vec3 color1;
    uniform vec3 color2;

    varying float vReflectionFactor;

    void main() {
      float f = clamp( vReflectionFactor, 0.0, 1.0 );
      gl_FragColor = vec4(mix(color2, color1, vec3(f)), f);
    }
    `;

    const sunRimMaterial = new ShaderMaterial({
      uniforms,
      vertexShader,
      fragmentShader,
      transparent: true,
      blending: AdditiveBlending,
    });
    const sunRimGeometry = new IcosahedronGeometry(5, 12);
    const sunRimMesh = new Mesh(sunRimGeometry, sunRimMaterial);
    sunRimMesh.scale.setScalar(1.01);
    this.sunRim = sunRimMesh;
  }

  addLighting() {
    const sunLight = new PointLight(0xffff99, 1000);
    sunLight.position.set(0, 0, 0);
    this.group.add(sunLight);
  }

  createAnimateFunction() {
    return (t = 0) => {
      const time = t * 0.00051;
      requestAnimationFrame(this.animate);
      this.group.userData.update(time);
    };
  }

  getSun() {
    return this.group;
  }
}

Creating Planets

All planets are built using a similar logic: each planet needs an orbit, a texture, an orbit speed, and a rotation speed. For planets that require them, rings should also be added.

import {
  Mesh,
  Color,
  Group,
  DoubleSide,
  RingGeometry,
  TorusGeometry,
  TextureLoader,
  ShaderMaterial,
  SRGBColorSpace,
  AdditiveBlending,
  MeshPhongMaterial,
  MeshBasicMaterial,
  IcosahedronGeometry,
} from "three";

export class Planet {
  group;
  loader;
  animate;
  planetGroup;
  planetGeometry;

  constructor({
    orbitSpeed = 1,
    orbitRadius = 1,
    orbitRotationDirection = "clockwise",

    planetSize = 1,
    planetAngle = 0,
    planetRotationSpeed = 1,
    planetRotationDirection = "clockwise",
    planetTexture = "/solar-system-threejs/assets/mercury-map.jpg",

    rimHex = 0x0088ff,
    facingHex = 0x000000,

    rings = null,
  } = {}) {
    this.orbitSpeed = orbitSpeed;
    this.orbitRadius = orbitRadius;
    this.orbitRotationDirection = orbitRotationDirection;

    this.planetSize = planetSize;
    this.planetAngle = planetAngle;
    this.planetTexture = planetTexture;
    this.planetRotationSpeed = planetRotationSpeed;
    this.planetRotationDirection = planetRotationDirection;

    this.rings = rings;

    this.group = new Group();
    this.planetGroup = new Group();
    this.loader = new TextureLoader();
    this.planetGeometry = new IcosahedronGeometry(this.planetSize, 12);

    this.createOrbit();
    this.createRings();
    this.createPlanet();
    this.createGlow(rimHex, facingHex);

    this.animate = this.createAnimateFunction();
    this.animate();
  }

  createOrbit() {
    const orbitGeometry = new TorusGeometry(this.orbitRadius, 0.01, 100);
    const orbitMaterial = new MeshBasicMaterial({
      color: 0xadd8e6,
      side: DoubleSide,
    });
    const orbitMesh = new Mesh(orbitGeometry, orbitMaterial);
    orbitMesh.rotation.x = Math.PI / 2;
    this.group.add(orbitMesh);
  }

  createPlanet() {
    const map = this.loader.load(this.planetTexture);
    const planetMaterial = new MeshPhongMaterial({ map });
    planetMaterial.map.colorSpace = SRGBColorSpace;
    const planetMesh = new Mesh(this.planetGeometry, planetMaterial);
    this.planetGroup.add(planetMesh);
    this.planetGroup.position.x = this.orbitRadius - this.planetSize / 9;
    this.planetGroup.rotation.z = this.planetAngle;
    this.group.add(this.planetGroup);
  }

  createGlow(rimHex, facingHex) {
    const uniforms = {
      color1: { value: new Color(rimHex) },
      color2: { value: new Color(facingHex) },
      fresnelBias: { value: 0.2 },
      fresnelScale: { value: 1.5 },
      fresnelPower: { value: 4.0 },
    };

    const vertexShader = `
    uniform float fresnelBias;
    uniform float fresnelScale;
    uniform float fresnelPower;

    varying float vReflectionFactor;

    void main() {
      vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
      vec4 worldPosition = modelMatrix * vec4( position, 1.0 );

      vec3 worldNormal = normalize( mat3( modelMatrix[0].xyz, modelMatrix[1].xyz, modelMatrix[2].xyz ) * normal );

      vec3 I = worldPosition.xyz - cameraPosition;

      vReflectionFactor = fresnelBias + fresnelScale * pow( 1.0 + dot( normalize( I ), worldNormal ), fresnelPower );

      gl_Position = projectionMatrix * mvPosition;
    }
    `;

    const fragmentShader = `
      uniform vec3 color1;
      uniform vec3 color2;

      varying float vReflectionFactor;

      void main() {
        float f = clamp( vReflectionFactor, 0.0, 1.0 );
        gl_FragColor = vec4(mix(color2, color1, vec3(f)), f);
      }
    `;

    const planetGlowMaterial = new ShaderMaterial({
      uniforms,
      vertexShader,
      fragmentShader,
      transparent: true,
      blending: AdditiveBlending,
    });
    const planetGlowMesh = new Mesh(this.planetGeometry, planetGlowMaterial);
    planetGlowMesh.scale.setScalar(1.1);
    this.planetGroup.add(planetGlowMesh);
  }

  createRings() {
    if (!this.rings) return;

    const innerRadius = this.planetSize + 0.1;
    const outerRadius = innerRadius + this.rings.ringsSize;

    const ringsGeometry = new RingGeometry(innerRadius, outerRadius, 32);

    const ringsMaterial = new MeshBasicMaterial({
      side: DoubleSide,
      transparent: true,
      map: this.loader.load(this.rings.ringsTexture),
    });

    const ringMeshs = new Mesh(ringsGeometry, ringsMaterial);
    ringMeshs.rotation.x = Math.PI / 2;
    this.planetGroup.add(ringMeshs);
  }

  createAnimateFunction() {
    return () => {
      requestAnimationFrame(this.animate);

      this.updateOrbitRotation();
      this.updatePlanetRotation();
    };
  }

  updateOrbitRotation() {
    if (this.orbitRotationDirection === "clockwise") {
      this.group.rotation.y -= this.orbitSpeed;
    } else if (this.orbitRotationDirection === "counterclockwise") {
      this.group.rotation.y += this.orbitSpeed;
    }
  }

  updatePlanetRotation() {
    if (this.planetRotationDirection === "clockwise") {
      this.planetGroup.rotation.y -= this.planetRotationSpeed;
    } else if (this.planetRotationDirection === "counterclockwise") {
      this.planetGroup.rotation.y += this.planetRotationSpeed;
    }
  }

  getPlanet() {
    return this.group;
  }
}

For Earth, I'm extending the Planet class to add extra textures, such as clouds and a night texture for the planet's night side.

import {
  Mesh,
  AdditiveBlending,
  MeshBasicMaterial,
  MeshStandardMaterial,
} from "three";
import { Planet } from "./planet";

export class Earth extends Planet {
  constructor(props) {
    super(props);

    this.createPlanetLights();
    this.createPlanetClouds();
  }

  createPlanetLights() {
    const planetLightsMaterial = new MeshBasicMaterial({
      map: this.loader.load("/solar-system-threejs/assets/earth-map-2.jpg"),
      blending: AdditiveBlending,
    });
    const planetLightsMesh = new Mesh(
      this.planetGeometry,
      planetLightsMaterial
    );
    this.planetGroup.add(planetLightsMesh);

    this.group.add(this.planetGroup);
  }

  createPlanetClouds() {
    const planetCloudsMaterial = new MeshStandardMaterial({
      map: this.loader.load("/solar-system-threejs/assets/earth-map-3.jpg"),
      transparent: true,
      opacity: 0.8,
      blending: AdditiveBlending,
      alphaMap: this.loader.load(
        "/solar-system-threejs/assets/earth-map-4.jpg"
      ),
    });
    const planetCloudsMesh = new Mesh(
      this.planetGeometry,
      planetCloudsMaterial
    );
    planetCloudsMesh.scale.setScalar(1.003);
    this.planetGroup.add(planetCloudsMesh);

    this.group.add(this.planetGroup);
  }
}

By searching on Google for about five minutes, you’ll come across a table with all the necessary values for adding planets to the scene.

Planet Size (diameter) Rotation speed Rotation direction Orbit speed
Mercury 4,880 km 10.83 km/h Counterclockwise 47.87 km/s
Venus 12,104 km 6.52 km/h Clockwise 35.02 km/s
Earth 12,742 km 1674.4 km/h Counterclockwise 29.78 km/s
Mars 6,779 km 866.5 km/h Counterclockwise 24.07 km/s
Jupiter 142,984 km 45,300 km/h Counterclockwise 13.07 km/s
Saturn 120,536 km 35,500 km/h Counterclockwise 9.69 km/s
Uranus 51,118 km 9,320 km/h Clockwise 6.81 km/s
Neptune 49,528 km 9,720 km/h Counterclockwise 5.43 km/s

Now, all the planets and the sun can be added to the scene.

const planets = [
  {
    orbitSpeed: 0.00048,
    orbitRadius: 10,
    orbitRotationDirection: "clockwise",
    planetSize: 0.2,
    planetRotationSpeed: 0.005,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/mercury-map.jpg",
    rimHex: 0xf9cf9f,
  },
  {
    orbitSpeed: 0.00035,
    orbitRadius: 13,
    orbitRotationDirection: "clockwise",
    planetSize: 0.5,
    planetRotationSpeed: 0.0005,
    planetRotationDirection: "clockwise",
    planetTexture: "/solar-system-threejs/assets/venus-map.jpg",
    rimHex: 0xb66f1f,
  },
  {
    orbitSpeed: 0.00024,
    orbitRadius: 19,
    orbitRotationDirection: "clockwise",
    planetSize: 0.3,
    planetRotationSpeed: 0.01,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/mars-map.jpg",
    rimHex: 0xbc6434,
  },
  {
    orbitSpeed: 0.00013,
    orbitRadius: 22,
    orbitRotationDirection: "clockwise",
    planetSize: 1,
    planetRotationSpeed: 0.06,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/jupiter-map.jpg",
    rimHex: 0xf3d6b6,
  },
  {
    orbitSpeed: 0.0001,
    orbitRadius: 25,
    orbitRotationDirection: "clockwise",
    planetSize: 0.8,
    planetRotationSpeed: 0.05,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/saturn-map.jpg",
    rimHex: 0xd6b892,
    rings: {
      ringsSize: 0.5,
      ringsTexture: "/solar-system-threejs/assets/saturn-rings.jpg",
    },
  },
  {
    orbitSpeed: 0.00007,
    orbitRadius: 28,
    orbitRotationDirection: "clockwise",
    planetSize: 0.5,
    planetRotationSpeed: 0.02,
    planetRotationDirection: "clockwise",
    planetTexture: "/solar-system-threejs/assets/uranus-map.jpg",
    rimHex: 0x9ab6c2,
    rings: {
      ringsSize: 0.4,
      ringsTexture: "/solar-system-threejs/assets/uranus-rings.jpg",
    },
  },
  {
    orbitSpeed: 0.000054,
    orbitRadius: 31,
    orbitRotationDirection: "clockwise",
    planetSize: 0.5,
    planetRotationSpeed: 0.02,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/neptune-map.jpg",
    rimHex: 0x5c7ed7,
  },
];

planets.forEach((item) => {
  const planet = new Planet(item).getPlanet();
  scene.add(planet);
});

const earth = new Earth({
  orbitSpeed: 0.00029,
  orbitRadius: 16,
  orbitRotationDirection: "clockwise",
  planetSize: 0.5,
  planetAngle: (-23.4 * Math.PI) / 180,
  planetRotationSpeed: 0.01,
  planetRotationDirection: "counterclockwise",
  planetTexture: "/solar-system-threejs/assets/earth-map-1.jpg",
}).getPlanet();

scene.add(earth);

In result all solar system will look sth like:

Solar system with Three.js

Deploying to GitHub Pages

For deploying to set the correct base in vite.config.js.

If you are deploying to https://.github.io/, or to a custom domain through GitHub Pages, set base to '/'. Alternatively, you can remove base from the configuration, as it defaults to '/'.

If you are deploying to https://.github.io// (eg. your repository is at https://github.com//), then set base to '//'.

Go to your GitHub Pages configuration in the repository settings page and choose the source of deployment as "GitHub Actions", this will lead you to create a workflow that builds and deploys your project, a sample workflow that installs dependencies and builds using npm is provided:

# Simple workflow for deploying static content to GitHub Pages
name: Deploy static content to Pages

on:
  # Runs on pushes targeting the default branch
  push:
    branches: ['main']

  # Allows you to run this workflow manually from the Actions tab
  workflow_dispatch:

# Sets the GITHUB_TOKEN permissions to allow deployment to GitHub Pages
permissions:
  contents: read
  pages: write
  id-token: write

# Allow one concurrent deployment
concurrency:
  group: 'pages'
  cancel-in-progress: true

jobs:
  # Single deploy job since we're just deploying
  deploy:
    environment:
      name: github-pages
      url: ${{ steps.deployment.outputs.page_url }}
    runs-on: ubuntu-latest
    steps:
      - name: Checkout
        uses: actions/checkout@v4
      - name: Set up Node
        uses: actions/setup-node@v4
        with:
          node-version: 20
          cache: 'npm'
      - name: Install dependencies
        run: npm ci
      - name: Build
        run: npm run build
      - name: Setup Pages
        uses: actions/configure-pages@v4
      - name: Upload artifact
        uses: actions/upload-pages-artifact@v3
        with:
          # Upload dist folder
          path: './dist'
      - name: Deploy to GitHub Pages
        id: deployment
        uses: actions/deploy-pages@v4

That is it. If your deployment has not started automatically you can always start it manually in Actions tab in your repo. Link with deployed project can be found below.


Conclusion

That’s it for today! You can find the link to the entire project below. I hope you found this entertaining and don’t still believe the Earth is flat.
See ya!

Repository link

Deployment link

The above is the detailed content of Solar system with Three.js. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn