search
HomeBackend DevelopmentPython TutorialGuide to Building a Simple Python Web Scraping Application

Guide to Building a Simple Python Web Scraping Application

Scraping web data in Python usually involves sending HTTP requests to the target website and parsing the returned HTML or JSON data. ‌ Below is an example of a simple web scraping application that uses the requests library to send HTTP requests and uses the BeautifulSouplibrary to parse HTML. ‌

Python builds a simple web scraping case

First, make sure you have installed the requests and beautifulsoup4 libraries. If not, you can install them with the following command:‌

pip install requests beautifulsoup4
Then, you can write a Python script like the following to scrape network data:

import requests 
from bs4 import BeautifulSoup 

# URL of the target website 
url = 'http://example.com' 

# Sending HTTP GET request 
response = requests.get(url) 

# Check if the request was successful 
if response.status_code == 200: 
    # Parsing HTML with BeautifulSoup 
    soup = BeautifulSoup(response.text, 'html.parser') 

    # Extract the required data, for example, extract all the titles 
    titles = soup.find_all('h1') 

    # Print title 
    for title in titles: 
        print(title.text) 
else: 
    print('Request failed,status code:', response.status_code) 

In this example, we first imported the requestsand BeautifulSouplibraries. Then, we defined the URL of the target website and sent an HTTP GET request using the requests.get() method. If the request is successful (status code is 200), we parse the returned HTML using BeautifulSoup and extract all

tags, which usually contain the main title of the page. Finally, we print out the text content of each title.

Please note that in an actual web scraping project, you need to comply with the target website's robots.txt file rules and respect the website's copyright and terms of use. In addition, some websites may use anti-crawler techniques, such as dynamically loading content, captcha verification, etc., which may require more complex handling strategies.

Why do you need to use a proxy for web scraping?

Using a proxy to crawl websites is a common method to circumvent IP restrictions and anti-crawler mechanisms. Proxy servers can act as intermediaries, forwarding your requests to the target website and returning the response to you, so that the target website can only see the IP address of the proxy server instead of your real IP address.

A simple example of web scraping using a proxy

In Python, you can use the requestslibrary to set up a proxy. Here is a simple example showing how to use a proxy to send an HTTP request:

import requests 

# The IP address and port provided by swiftproxy 
proxy = { 
    'http': 'http://45.58.136.104:14123', 
    'https': 'http://119.28.12.192:23529', 
} 

# URL of the target website 
url = 'http://example.com' 

# Sending requests using a proxy 
response = requests.get(url, proxies=proxy) 

# Check if the request was successful 
if response.status_code == 200: 
    print('Request successful, response content:‌', response.text) 
else: 
    print('Request failed,status code:‌', response.status_code) 

Note that you need to replace the proxy server IP and port with the actual proxy server address. Also, make sure the proxy server is reliable and supports the website you want to crawl. Some websites may detect and block requests from known proxy servers, so you may need to change proxy servers regularly or use a more advanced proxy service.

The above is the detailed content of Guide to Building a Simple Python Web Scraping Application. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Merging Lists in Python: Choosing the Right MethodMerging Lists in Python: Choosing the Right MethodMay 14, 2025 am 12:11 AM

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

How to concatenate two lists in python 3?How to concatenate two lists in python 3?May 14, 2025 am 12:09 AM

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Python concatenate list stringsPython concatenate list stringsMay 14, 2025 am 12:08 AM

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

Python execution, what is that?Python execution, what is that?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Python: what are the key featuresPython: what are the key featuresMay 14, 2025 am 12:02 AM

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use