


Advanced Indexing Techniques with LlamaIndex and Ollama: Part 2
Code can be found here: GitHub - jamesbmour/blog_tutorials:
Welcome back to our deep dive into LlamaIndex and Ollama! In Part 1, we covered the essentials of setting up and using these powerful tools for efficient information retrieval. Now, it’s time to explore advanced indexing techniques that will elevate your document processing and querying capabilities to the next level.
1. Introduction
Before we proceed, let’s quickly recap the key takeaways from Part 1:
- Setting up LlamaIndex and Ollama
- Creating a basic index
- Performing simple queries
In this part, we’ll dive into different index types, learn how to customize index settings, manage multiple documents, and explore advanced querying techniques. By the end, you’ll have a robust understanding of how to leverage LlamaIndex and Ollama for complex information retrieval tasks.
If you haven’t set up your environment yet, make sure to refer back to Part 1 for detailed instructions on installing and configuring LlamaIndex and Ollama.
2. Exploring Different Index Types
LlamaIndex offers various index types, each tailored to different use cases. Let’s explore the four main types:
2.1 List Index
The List Index is the simplest form of indexing in LlamaIndex. It’s an ordered list of text chunks, ideal for straightforward use cases.
from llama_index.core import ListIndex, SimpleDirectoryReader, VectorStoreIndex from dotenv import load_dotenv from llama_index.llms.ollama import Ollama from llama_index.core import Settings from IPython.display import Markdown, display from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.ollama import OllamaEmbedding import chromadb from IPython.display import HTML # make markdown display text color green for all cells # Apply green color to all Markdown output def display_green_markdown(text): green_style = """ <style> .green-output { color: green; } </style> """ green_markdown = f'<div class="green-output">{text}</div>' display(HTML(green_style + green_markdown)) # set the llm to ollama Settings.llm = Ollama(model='phi3', base_url='http://localhost:11434',temperature=0.1) load_dotenv() documents = SimpleDirectoryReader('data').load_data() index = ListIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("What is llama index used for?") display_green_markdown(response)
Pros:
- Simple and quick to create
- Best suited for small document sets
Cons:
- Less efficient with large datasets
- Limited semantic understanding
2.2 Vector Store Index
The Vector Store Index leverages embeddings to create a semantic representation of your documents, enabling more sophisticated searches.
# Create Chroma client chroma_client = chromadb.EphemeralClient() # Define collection name collection_name = "quickstart" # Check if the collection already exists existing_collections = chroma_client.list_collections() if collection_name in [collection.name for collection in existing_collections]: chroma_collection = chroma_client.get_collection(collection_name) print(f"Using existing collection '{collection_name}'.") else: chroma_collection = chroma_client.create_collection(collection_name) print(f"Created new collection '{collection_name}'.") # Set up embedding model embed_model = OllamaEmbedding( model_name="snowflake-arctic-embed", base_url="http://localhost:11434", ollama_additional_kwargs={"prostatic": 0}, ) # Load documents documents = SimpleDirectoryReader("./data/paul_graham/").load_data() # Set up ChromaVectorStore and load in data vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, embed_model=embed_model ) # Create query engine and perform query query_engine = index.as_query_engine() response = query_engine.query("What is llama index best suited for?") display_green_markdown(response)
This index type excels in semantic search and scalability, making it ideal for large datasets.
2.3 Tree Index
The Tree Index organizes information hierarchically, which is beneficial for structured data.
from llama_index.core import TreeIndex, SimpleDirectoryReader documents = SimpleDirectoryReader('data').load_data() tree_index = TreeIndex.from_documents(documents) query_engine = tree_index.as_query_engine() response = query_engine.query("Explain the tree index structure.") display_green_markdown(response)
Tree indices are particularly effective for data with natural hierarchies, such as organizational structures or taxonomies.
2.4 Keyword Table Index
The Keyword Table Index is optimized for efficient keyword-based retrieval.
from llama_index.core import KeywordTableIndex, SimpleDirectoryReader documents = SimpleDirectoryReader('data/paul_graham').load_data() keyword_index = KeywordTableIndex.from_documents(documents) query_engine = keyword_index.as_query_engine() response = query_engine.query("What is the keyword table index in llama index?") display_green_markdown(response)
This index type is ideal for scenarios that require quick lookups based on specific keywords.
3. Customizing Index Settings
3.1 Chunking Strategies
Effective text chunking is crucial for index performance. LlamaIndex provides various chunking methods:
from llama_index.core.node_parser import SimpleNodeParser parser = SimpleNodeParser.from_defaults(chunk_size=1024) documents = SimpleDirectoryReader('data').load_data() nodes = parser.get_nodes_from_documents(documents) print(nodes[0])
Experiment with different chunking strategies to find the optimal balance between context preservation and query performance.
3.2 Embedding Models
LlamaIndex supports various embedding models. Here’s how you can use Ollama for embeddings:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.ollama import OllamaEmbedding embed_model = OllamaEmbedding( model_name="snowflake-arctic-embed", base_url="http://localhost:11434", ollama_additional_kwargs={"mirostat": 0}, ) index = VectorStoreIndex.from_documents(documents, embed_model=embed_model) query_engine = index.as_query_engine() response = query_engine.query("What is an embedding model used for in LlamaIndex?") display_green_markdown(response)
Experiment with different Ollama models and adjust parameters to optimize embedding quality for your specific use case.
4. Handling Multiple Documents
4.1 Creating a Multi-Document Index
LlamaIndex simplifies the process of creating indices from multiple documents of various types:
txt_docs = SimpleDirectoryReader('data/paul_graham').load_data() web_docs = SimpleDirectoryReader('web_pages').load_data() data = txt_docs + web_docs all_docs = txt_docs + web_docs index = VectorStoreIndex.from_documents(all_docs) query_engine = index.as_query_engine() response = query_engine.query("How do you create a multi-document index in LlamaIndex?") display_green_markdown(response)
4.2 Cross-Document Querying
To effectively query across multiple documents, you can implement relevance scoring and manage context boundaries:
from llama_index.core import QueryBundle from llama_index.core.query_engine import RetrieverQueryEngine retriever = index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args(retriever, response_mode="compact") query = QueryBundle("How do you query across multiple documents?") response = query_engine.query(query) display_green_markdown(response)
5. Conclusion and Next Steps
In this second part of our LlamaIndex and Ollama series, we explored advanced indexing techniques, including:
- Different index types and their use cases
- Customizing index settings for optimal performance
- Handling multiple documents and cross-document querying
If you would like to support me or buy me a beer feel free to join my Patreon jamesbmour
The above is the detailed content of Advanced Indexing Techniques with LlamaIndex and Ollama: Part 2. For more information, please follow other related articles on the PHP Chinese website!

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools