Home >Web Front-end >JS Tutorial >WhatsApp AI Chatbot: Lets build one with the API
Hey there, I'm Rohan, founder of Spur, a WhatsApp API & Instagram Comment/DM Automation Software.
A few weeks ago, I wrote a blog on where you should build a WhatsApp integration or not. That was a high-level article on the topic, today we'll be learning on how do you get started with the WhatsApp API?
Today, we'll make a simple bot that runs on a Node server, takes in webhooks from the WhatsApp Cloud API, reads the messages & uses the
OpenAI GPT 4o to send a response.
Want to jump straight to the code? Link is at the bottom.
This is fairly straightforward, and Meta already has a guide on this. Going forward, I'm going to assume
For the token, you can use the temporary token, we'll cover deploying to production in another tutorial someday.
if you dont have pnpm setup, this is the easiest way
corepack enable corepack prepare pnpm@latest --activate
now we start
mkdir whatsapp-ai-bot # intialize npm project pnpm init # make the server file touch index.js # env file touch .env
Install the required dependencies now:
pnpm install express dotenv openai
Never commit API keys. To keep sensitive information like API keys out of the codebase, we will use environment variables. Create a .env file in the root directory of your project and add the following line:
OPENAI_API_KEY=<your-openai-api-key>
Now use the created index.js file and add the following code
import express from 'express'; import { config } from 'dotenv'; import OpenAI from 'openai'; // Load environment variables config(); // Create a web server const app = express(); const port = process.env.PORT || 3034; app.listen(port, () => { console.log(`Server running on port ${port}`); }); // Add middleware to parse JSON bodies app.use(express.json()); // Initialize OpenAI API const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY, }); app.get('/webhooks', (req, res) => { if ( req.query['hub.mode'] === 'subscribe' && req.query['hub.verify_token'] === '1234' ) { res.send(req.query['hub.challenge']); } else { res.sendStatus(400); } }); app.post('/webhooks', async (req, res) => { const body = req.body.entry[0].changes[0]; if (body.field !== 'messages') { // not from the messages webhook so dont process return res.sendStatus(200); } if (!body.value.messages) { return res.sendStatus(200); } const text = body.value.messages .map((message) => message.text.body) .join('\n\n'); console.log(text); const completion = await openai.chat.completions.create({ model: 'gpt-4o-mini', messages: [{ role: 'user', content: text }], }); // Extract the response from the OpenAI completion const aiResponse = completion.choices[0].message.content; // Extract the phone number from the incoming message const phoneNumber = body.value.messages[0].from; // Prepare the message payload const messagePayload = { messaging_product: 'whatsapp', to: phoneNumber, type: 'text', text: { body: aiResponse, }, }; // Send the response back to WhatsApp try { const response = await fetch( `https://graph.facebook.com/v20.0/${process.env.PHONE_NUMBER_ID}/messages`, { method: 'POST', headers: { Authorization: `Bearer ${process.env.SYSTEM_TOKEN}`, 'Content-Type': 'application/json', }, body: JSON.stringify(messagePayload), }, ); if (!response.ok) { throw new Error(`HTTP error! status: ${response.status}`); } console.log('Message sent successfully'); } catch (error) { console.error('Failed to send message:', error); } res.sendStatus(200); });
and also modify the package.json to
{ "name": "whatsapp-ai-bot", "version": "1.0.0", "description": "", "main": "index.js", "scripts": { "start": "node server.js", "dev": "nodemon server.js" }, "keywords": [], "author": "", "license": "ISC", "type": "module", "packageManager": "pnpm@9.6.0", "dependencies": { "dotenv": "^16.4.5", "express": "^4.19.2", "openai": "^4.53.2" }, "devDependencies": { "nodemon": "^3.1.4" } }
This example is just the tip of the iceberg, there are so so many things you can do to improve this
So that's about it. If you're also interested in the article I wrote about WhatsApp integration, you can check it out here.
I've also shared the code of the working example on Spur's GitHub organization.
The above is the detailed content of WhatsApp AI Chatbot: Lets build one with the API. For more information, please follow other related articles on the PHP Chinese website!