search
HomeTechnology peripheralsAITsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?

Tsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?
The AIxiv column is a column where academic and technical content is published on this site. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

This work was initiated by the basic theory innovation team led by Professor Zhu Jun of Tsinghua University. For a long time, the team has focused on the current bottleneck issues in the development of artificial intelligence, explored original artificial intelligence theories and key technologies, and is at the international leading level in the research on adversarial security theories and methods of intelligent algorithms. It has also conducted in-depth research on the adversarial robustness and effectiveness of deep learning. Basic common issues such as data utilization efficiency. Relevant work won the first prize of Wu Wenjun Artificial Intelligence Natural Science Award, published more than 100 CCF Class A papers, developed the open source ARES counterattack attack and defense algorithm platform (https://github.com/thu-ml/ares), and realized some patented products Transform learning and research into practical application.

Multi-modal large language models (MLLMs) represented by GPT-4o have attracted much attention due to their excellent performance in multiple modalities such as language and images. They have not only become users' right-hand assistants in daily work, but have also gradually penetrated into major application fields such as autonomous driving and medical diagnosis, setting off a technological revolution.
However, are multi-modal large models safe and reliable?

Tsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?

                                                                                                                                                                                                                         As shown in Figure 1, by modifying the image pixels through adversarial attacks, GPT-4o will The tailed lion statue was mistakenly identified as the Eiffel Tower in Paris or Big Ben in London. The content of such error targets can be customized at will, even beyond the safe boundaries of the model application.
                                                                                                                                                                               
In the jailbreak attack scenario, although Claude successfully rejected the malicious request in text form, when the user input an additional solid-color unrelated picture, the model output false news according to the user's request. This means that large multi-modal models have more risks and challenges than large language models.

In addition to these two examples, multi-modal large models also have various security threats or social risks such as illusion, bias, and privacy leakage, which will seriously affect their reliability and credibility in practical applications. Do these vulnerability issues occur by chance, or are they widespread? What are the differences in the credibility of different multimodal large models, and where do they come from?

Recently, researchers from Tsinghua University, Beihang University, Shanghai Jiao Tong University and Ruilai Intelligence jointly wrote a hundred-page article and released a comprehensive benchmark called MultiTrust, which for the first time comprehensively evaluated mainstream multi-modal modes from multiple dimensions and perspectives. The credibility of the large model demonstrates multiple potential security risks and inspires the next development of multi-modal large models.
Tsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?
  • Paper title: Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study
  • Paper link: https://arxiv.org/pdf/2406.07057
  • Project homepage: https:// multi-trust.github.io/
  • Code repository: https://github.com/thu-ml/MMTrustEval In its large-scale model evaluation work, MultiTrust refined five credibility evaluation dimensions—truthfulness, safety, robustness, fairness, and privacy. Secondary classification is carried out, and tasks, indicators, and data sets are constructed in a targeted manner to provide a comprehensive assessment.

                                                                                                                                                                                       Task scenarios cover discrimination and generation tasks, spanning pure text tasks and multimodal tasks. The data sets corresponding to the tasks are not only transformed and adapted based on public text or image data sets, but also some more complex and challenging data are constructed through manual collection or algorithm synthesis.

                                                                                                                                                                                                         Figure 5 MultiTrust task list
 

Tsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?

Different from the trustworthy evaluation of large language models (LLMs), ML The multi-modal features of LM bring more diverse and complex Risk scenarios and possibilities. In order to better conduct systematic evaluation, the MultiTrust benchmark not only starts from the traditional behavioral evaluation dimension, but also innovatively introduces the two evaluation perspectives of multi-modal risk and cross-modal impact, comprehensively covering the new issues brought by the new modalities. new challenge.险 Figure 6 The risk of multi -mode risk and cross -modular impact

Specifically, multi -mode risk refers to the new risks brought by multi -mode scene, such as Possible incorrect answers when the model processes visual misleading information, as well as misjudgments in multi-modal reasoning involving safety issues. Although the model can correctly identify the alcohol in the picture, in further reasoning, some models are not aware of the potential risk of sharing it with cephalosporin drugs.
Tsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?
涉 Figure 7 Models in the reasoning involving security issues have misjudgment
Cross -modal effects refer to the impact of the addition of new modes on the credibility of the original mode, such as input of irrelevant images It may change the trusted behavior of the large language model backbone network in plain text scenarios, leading to more unpredictable security risks. In jailbreaking attacks and contextual privacy leakage tasks commonly used for large language model credibility assessment, if the model is provided with a picture that has nothing to do with the text, the original security behavior may be destroyed (Figure 2).
Result analysis and key conclusions
Tsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?
                                                                                                                                                                            ‐ to
----- a real-time update of the credibility list (part)

The researchers maintain a regularly updated multi-modal database The latest models such as GPT-4o and Claude3.5 have been added to the model credibility list. Overall, closed-source commercial models are safer and more reliable than mainstream open-source models. Among them, OpenAI's GPT-4 and Anthropic's Claude ranked highest in credibility, while Microsoft Phi-3, which added security alignment, ranked highest among open source models, but there is still a certain gap with the closed source model.

Commercial models such as GPT-4, Claude, and Gemini have implemented many reinforcement technologies for security and trustworthiness, but there are still some security and trustworthiness risks. For example, they still show vulnerability to adversarial attacks, multi-modal jailbreak attacks, etc., which greatly interferes with user experience and trust.
Tsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?
                                                                
Although the scores of many open source models on mainstream general lists are equivalent to or even better than GPT-4, In trust-level testing, these models still showed weaknesses and loopholes in different aspects. For example, the emphasis on general capabilities (such as OCR) during the training phase makes embedding jailbroken text and sensitive information into image input a more threatening source of risk.
Based on the experimental results of cross-modal effects, the author found that multi-modal training and inference will weaken the safe alignment mechanism of large language models. Many multi-modal large models will use aligned large language models as the backbone network and fine-tune during the multi-modal training process. The results show that these models still exhibit large security vulnerabilities and credible risks. At the same time, in multiple pure text trustworthiness assessment tasks, introducing images during reasoning will also have an impact and interference on the trustworthy behavior of the model.
后 Selepas imej diperkenalkan dalam Rajah 10, model lebih cenderung untuk membocorkan kandungan privasi dalam teks Eksperimen telah menunjukkan bahawa kredibiliti model berbilang mod dan besar adalah berkaitan dengan keupayaan amnya, tetapi masih terdapat perbezaan. dalam prestasi model dalam dimensi penilaian kredibiliti yang berbeza. Algoritma berkaitan model besar berbilang modal yang biasa pada masa ini, seperti set data penalaan halus yang dihasilkan dengan bantuan GPT-4V, RLHF untuk halusinasi, dll., tidak mencukupi untuk meningkatkan sepenuhnya kredibiliti model. Kesimpulan sedia ada juga menunjukkan bahawa model besar berbilang modal mempunyai cabaran unik yang berbeza daripada model bahasa besar, dan algoritma yang inovatif dan cekap diperlukan untuk penambahbaikan selanjutnya.
Lihat kertas untuk keputusan dan analisis terperinci.

Hala Tuju Masa Depan

Hasil penyelidikan menunjukkan bahawa meningkatkan kredibiliti model besar berbilang modal memerlukan perhatian khusus daripada penyelidik. Dengan menggunakan penyelesaian penjajaran model bahasa yang besar, data dan senario latihan yang pelbagai serta paradigma seperti Retrieval Enhanced Generation (RAG) dan Constitutional AI (Constitutional AI) boleh membantu meningkatkan ke tahap tertentu. Tetapi peningkatan kredibiliti model besar berbilang mod melampaui ini. Penjajaran antara modaliti dan keteguhan pengekod visual juga merupakan faktor utama yang mempengaruhi. Selain itu, meningkatkan prestasi model dalam aplikasi praktikal melalui penilaian berterusan dan pengoptimuman dalam persekitaran dinamik juga merupakan hala tuju penting pada masa hadapan.
Dengan keluaran penanda aras MultiTrust, pasukan penyelidik juga mengeluarkan alat penilaian kebolehpercayaan model besar multi-modal MMTrustEval Ciri-ciri integrasi model dan penilaiannya memberikan maklumat penting untuk penyelidikan kredibiliti model besar berbilang modal . Berdasarkan kerja dan kit alat ini, pasukan menganjurkan pertandingan data dan algoritma berkaitan keselamatan model besar berbilang modal [1,2] untuk mempromosikan penyelidikan yang boleh dipercayai pada model besar. Pada masa hadapan, dengan kemajuan teknologi yang berterusan, model besar berbilang modal akan menunjukkan potensi mereka dalam lebih banyak bidang, tetapi isu kredibiliti mereka masih memerlukan perhatian yang berterusan dan penyelidikan yang mendalam.

Pautan rujukan:

[1] CCDM2024 Multimodal Large Language Model Red Team Cabaran Keselamatan http://116.1114.8df
[2] Pertandingan Algoritma Pazhou Ke-3 - Teknologi Pengukuhan Keselamatan Algoritma Model Besar Berbilang Modal https://iacc.pazhoulab-huangpu.com/contestdetail?id=668de7357ff47da8cc88c7b8&award=1,00,

The above is the detailed content of Tsinghua University takes the lead in releasing multi-modal evaluation MultiTrust: How reliable is GPT-4?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议Dec 21, 2023 pm 03:25 PM

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了Sep 05, 2023 pm 05:53 PM

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来Sep 23, 2023 am 09:01 AM

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」Feb 02, 2024 pm 09:33 PM

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

FATE 2.0发布:实现异构联邦学习系统互联FATE 2.0发布:实现异构联邦学习系统互联Jan 16, 2024 am 11:48 AM

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了Mar 01, 2024 pm 10:55 PM

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升Oct 23, 2023 pm 03:13 PM

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

何恺明和谢赛宁团队成功跟随解构扩散模型探索,最终创造出备受赞誉的去噪自编码器何恺明和谢赛宁团队成功跟随解构扩散模型探索,最终创造出备受赞誉的去噪自编码器Jan 29, 2024 pm 02:15 PM

去噪扩散模型(DDM)是目前广泛应用于图像生成的一种方法。最近,XinleiChen、ZhuangLiu、谢赛宁和何恺明四人团队对DDM进行了解构研究。通过逐步剥离其组件,他们发现DDM的生成能力逐渐下降,但表征学习能力仍然保持一定水平。这说明DDM中的某些组件对于表征学习的作用可能并不重要。针对当前计算机视觉等领域的生成模型,去噪被认为是一种核心方法。这类方法通常被称为去噪扩散模型(DDM),通过学习一个去噪自动编码器(DAE),能够通过扩散过程有效地消除多个层级的噪声。这些方法实现了出色的图

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment