


I recently needed to classify sentences for a particular use case at work. Remembering Jeremy Howard's Lesson 4: Getting started with NLP for absolute beginners, I first adapted his notebook to fine-tune DEBERTA.
It worked, but not to my satisfaction, so I was curious what would happen if I used a LLM like LLAMA 3. The problem? Limited GPU resources. I only had access to a Tesla/Nvidia T4 instance.
Research led me to QLORA. This tutorial on Fine tuning LLama 3 LLM for Text Classification of Stock Sentiment using QLoRA was particularly useful. To better understand the tutorial, I adapted Lesson 4 into the QLORA tutorial notebook.
QLORA uses two main techniques:
- Quantization: Reduces model precision, making it smaller.
- LORA (Low-Rank Adaptation): Adds small, trainable layers instead of fine-tuning the whole model.
This allowed me to train LLAMA 3 8B on a 16GB VRAM T4, using about 12GB of VRAM. The results were surprisingly good, with prediction accuracy over 90%.
Confusion Matrix: [[83 4] [ 4 9]] Classification Report: precision recall f1-score support 0.0 0.95 0.95 0.95 87 1.0 0.69 0.69 0.69 13 accuracy 0.92 100 macro avg 0.82 0.82 0.82 100 weighted avg 0.92 0.92 0.92 100 Balanced Accuracy Score: 0.8231653404067196 Accuracy Score: 0.92
Here's the iPython notebook detailing the process.
This approach shows it's possible to work with large language models on limited hardware. Working with constraints often leads to creative problem-solving and learning opportunities. In this case, the limitations pushed me to explore and implement more efficient fine-tuning techniques.
The above is the detailed content of Fine-tuning LLAMA or Text Classification with Limited Resources. For more information, please follow other related articles on the PHP Chinese website!

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

Python is suitable for rapid development and data processing, while C is suitable for high performance and underlying control. 1) Python is easy to use, with concise syntax, and is suitable for data science and web development. 2) C has high performance and accurate control, and is often used in gaming and system programming.

The time required to learn Python varies from person to person, mainly influenced by previous programming experience, learning motivation, learning resources and methods, and learning rhythm. Set realistic learning goals and learn best through practical projects.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software