Home > Article > Web Front-end > Building a Chat Application with Ollamas Llama odel Using JavaScript, HTML, and CSS
In this blog post, we'll walk through the process of creating a simple chat application that interacts with Ollama's Llama 3 model. We'll use JavaScript, HTML, and CSS for the frontend, and Node.js with Express for the backend. By the end, you'll have a working chat application that sends user messages to the AI model and displays the responses in real-time.
Before you begin, ensure you have the following installed on your machine:
First, create an HTML file named index.html that defines the structure of our chat application.
8b05045a5be5764f313ed5b9168a17e6 49099650ebdc5f3125501fa170048923 93f0f5c25f18dab9d176bd4f6de5d30e 1fc2df4564f5324148703df3b6ed50c1 4f2fb0231f24e8aef524fc9bf9b9874f b2386ffb911b14667cb8f0f91ea547a7Chat with Ollama's Llama 36e916e0f7d1e588d4f442bf645aedb2f 8ff51dbba29311afe190f142221611c2 9c3bca370b5104690d9ef395f2c5f8d1 6c04bd5ca3fcae76e30b72ad730ca86d a6d2e8f914bded8324623d78afd134b2 3f1330c94e068d9fde0b083963ef8cd9 243810520421e2bfba145762b4cdc5ce16b28748ea4df4d9c2150843fecfba68 16b28748ea4df4d9c2150843fecfba68 34efcee4e97a1acabef8bc5b42af045b b07b939b2e508b829dd55c356122634aSend65281c5ac262bf6d81768915a4a77ac0 16b28748ea4df4d9c2150843fecfba68 84cf5d7ad8199c88ca1d921cae010baf2cacc6d41bbb37262a98f745aa00fbf0 36cc49f0c466276486e50c850b7e4956 73a6ac4ed44ffec12cee46588e518a5e
This HTML file includes a container for the chat messages, an input field for user messages, and a send button.
Next, create a CSS file named styles.css to style the chat application.
body { font-family: Arial, sans-serif; display: flex; justify-content: center; align-items: center; height: 100vh; background-color: #f0f0f0; margin: 0; } #chat-container { width: 400px; border: 1px solid #ccc; background-color: #fff; border-radius: 8px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); overflow: hidden; } #chat-window { height: 300px; padding: 10px; overflow-y: auto; border-bottom: 1px solid #ccc; } #messages { display: flex; flex-direction: column; } .message { padding: 8px; margin: 4px 0; border-radius: 4px; } .user-message { align-self: flex-end; background-color: #007bff; color: #fff; } .ai-message { align-self: flex-start; background-color: #e0e0e0; color: #000; } #user-input { width: calc(100% - 60px); padding: 10px; border: none; border-radius: 0; outline: none; } #send-button { width: 60px; padding: 10px; border: none; background-color: #007bff; color: #fff; cursor: pointer; }
This CSS file ensures the chat application looks clean and modern.
Create a JavaScript file named script.js to handle the frontend functionality.
document.getElementById('send-button').addEventListener('click', sendMessage); document.getElementById('user-input').addEventListener('keypress', function (e) { if (e.key === 'Enter') { sendMessage(); } }); function sendMessage() { const userInput = document.getElementById('user-input'); const messageText = userInput.value.trim(); if (messageText === '') return; displayMessage(messageText, 'user-message'); userInput.value = ''; // Send the message to the local AI and get the response getAIResponse(messageText).then(aiResponse => { displayMessage(aiResponse, 'ai-message'); }).catch(error => { console.error('Error:', error); displayMessage('Sorry, something went wrong.', 'ai-message'); }); } function displayMessage(text, className) { const messageElement = document.createElement('div'); messageElement.textContent = text; messageElement.className = `message ${className}`; document.getElementById('messages').appendChild(messageElement); document.getElementById('messages').scrollTop = document.getElementById('messages').scrollHeight; } async function getAIResponse(userMessage) { // Example AJAX call to a local server interacting with Ollama Llama 3 const response = await fetch('http://localhost:5000/ollama', { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ message: userMessage }), }); if (!response.ok) { throw new Error('Network response was not ok'); } const data = await response.json(); return data.response; // Adjust this based on your server's response structure }
This JavaScript file adds event listeners to the send button and input field, sends user messages to the backend, and displays both user and AI responses.
Ensure you have Node.js installed. Then, create a server.js file for the backend.
Install Express:
npm install express body-parser
Create the server.js file:
const express = require('express'); const bodyParser = require('body-parser'); const app = express(); const port = 5000; app.use(bodyParser.json()); app.post('/ollama', async (req, res) => { const userMessage = req.body.message; // Replace this with actual interaction with Ollama's Llama 3 // This is a placeholder for demonstration purposes const aiResponse = await getLlama3Response(userMessage); res.json({ response: aiResponse }); }); // Placeholder function to simulate AI response async function getLlama3Response(userMessage) { // Replace this with actual API call to Ollama's Llama 3 return `Llama 3 says: ${userMessage}`; } app.listen(port, () => { console.log(`Server running at http://localhost:${port}`); });
Run the server:
node server.js
In this setup, your Node.js server will handle incoming requests, interact with Ollama's Llama 3 model, and return responses.
By following these steps, you've created a chat application that sends user messages to Ollama's Llama 3 model and displays the responses. This setup can be extended and customized based on your specific requirements and the features offered by the Llama 3 model.
Feel free to explore and enhance the functionality of your chat application. Happy coding!
The above is the detailed content of Building a Chat Application with Ollamas Llama odel Using JavaScript, HTML, and CSS. For more information, please follow other related articles on the PHP Chinese website!