Home >Web Front-end >JS Tutorial >Building a Chat Application with Ollama&#s Llama odel Using JavaScript, HTML, and CSS

Building a Chat Application with Ollama&#s Llama odel Using JavaScript, HTML, and CSS

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2024-07-19 15:03:091368browse

Building a Chat Application with Ollama

Introduction

In this blog post, we'll walk through the process of creating a simple chat application that interacts with Ollama's Llama 3 model. We'll use JavaScript, HTML, and CSS for the frontend, and Node.js with Express for the backend. By the end, you'll have a working chat application that sends user messages to the AI model and displays the responses in real-time.

Prerequisites

Before you begin, ensure you have the following installed on your machine:

  • Node.js
  • npm (Node Package Manager)

Step 1: Setting Up the Frontend

HTML

First, create an HTML file named index.html that defines the structure of our chat application.

8b05045a5be5764f313ed5b9168a17e6
49099650ebdc5f3125501fa170048923
93f0f5c25f18dab9d176bd4f6de5d30e
    1fc2df4564f5324148703df3b6ed50c1
    4f2fb0231f24e8aef524fc9bf9b9874f
    b2386ffb911b14667cb8f0f91ea547a7Chat with Ollama's Llama 36e916e0f7d1e588d4f442bf645aedb2f
    8ff51dbba29311afe190f142221611c2
9c3bca370b5104690d9ef395f2c5f8d1
6c04bd5ca3fcae76e30b72ad730ca86d
    a6d2e8f914bded8324623d78afd134b2
        3f1330c94e068d9fde0b083963ef8cd9
            243810520421e2bfba145762b4cdc5ce16b28748ea4df4d9c2150843fecfba68
        16b28748ea4df4d9c2150843fecfba68
        34efcee4e97a1acabef8bc5b42af045b
        b07b939b2e508b829dd55c356122634aSend65281c5ac262bf6d81768915a4a77ac0
    16b28748ea4df4d9c2150843fecfba68
    84cf5d7ad8199c88ca1d921cae010baf2cacc6d41bbb37262a98f745aa00fbf0
36cc49f0c466276486e50c850b7e4956
73a6ac4ed44ffec12cee46588e518a5e

This HTML file includes a container for the chat messages, an input field for user messages, and a send button.

CSS

Next, create a CSS file named styles.css to style the chat application.

body {
    font-family: Arial, sans-serif;
    display: flex;
    justify-content: center;
    align-items: center;
    height: 100vh;
    background-color: #f0f0f0;
    margin: 0;
}

#chat-container {
    width: 400px;
    border: 1px solid #ccc;
    background-color: #fff;
    border-radius: 8px;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    overflow: hidden;
}

#chat-window {
    height: 300px;
    padding: 10px;
    overflow-y: auto;
    border-bottom: 1px solid #ccc;
}

#messages {
    display: flex;
    flex-direction: column;
}

.message {
    padding: 8px;
    margin: 4px 0;
    border-radius: 4px;
}

.user-message {
    align-self: flex-end;
    background-color: #007bff;
    color: #fff;
}

.ai-message {
    align-self: flex-start;
    background-color: #e0e0e0;
    color: #000;
}

#user-input {
    width: calc(100% - 60px);
    padding: 10px;
    border: none;
    border-radius: 0;
    outline: none;
}

#send-button {
    width: 60px;
    padding: 10px;
    border: none;
    background-color: #007bff;
    color: #fff;
    cursor: pointer;
}

This CSS file ensures the chat application looks clean and modern.

JavaScript

Create a JavaScript file named script.js to handle the frontend functionality.

document.getElementById('send-button').addEventListener('click', sendMessage);
document.getElementById('user-input').addEventListener('keypress', function (e) {
    if (e.key === 'Enter') {
        sendMessage();
    }
});

function sendMessage() {
    const userInput = document.getElementById('user-input');
    const messageText = userInput.value.trim();

    if (messageText === '') return;

    displayMessage(messageText, 'user-message');
    userInput.value = '';

    // Send the message to the local AI and get the response
    getAIResponse(messageText).then(aiResponse => {
        displayMessage(aiResponse, 'ai-message');
    }).catch(error => {
        console.error('Error:', error);
        displayMessage('Sorry, something went wrong.', 'ai-message');
    });
}

function displayMessage(text, className) {
    const messageElement = document.createElement('div');
    messageElement.textContent = text;
    messageElement.className = `message ${className}`;
    document.getElementById('messages').appendChild(messageElement);
    document.getElementById('messages').scrollTop = document.getElementById('messages').scrollHeight;
}

async function getAIResponse(userMessage) {
    // Example AJAX call to a local server interacting with Ollama Llama 3
    const response = await fetch('http://localhost:5000/ollama', {
        method: 'POST',
        headers: {
            'Content-Type': 'application/json',
        },
        body: JSON.stringify({ message: userMessage }),
    });

    if (!response.ok) {
        throw new Error('Network response was not ok');
    }

    const data = await response.json();
    return data.response; // Adjust this based on your server's response structure
}

This JavaScript file adds event listeners to the send button and input field, sends user messages to the backend, and displays both user and AI responses.

Step 2: Setting Up the Backend

Node.js and Express

Ensure you have Node.js installed. Then, create a server.js file for the backend.

  1. Install Express:

    npm install express body-parser
    
  2. Create the server.js file:

    const express = require('express');
    const bodyParser = require('body-parser');
    const app = express();
    const port = 5000;
    
    app.use(bodyParser.json());
    
    app.post('/ollama', async (req, res) => {
        const userMessage = req.body.message;
    
        // Replace this with actual interaction with Ollama's Llama 3
        // This is a placeholder for demonstration purposes
        const aiResponse = await getLlama3Response(userMessage);
    
        res.json({ response: aiResponse });
    });
    
    // Placeholder function to simulate AI response
    async function getLlama3Response(userMessage) {
        // Replace this with actual API call to Ollama's Llama 3
        return `Llama 3 says: ${userMessage}`;
    }
    
    app.listen(port, () => {
        console.log(`Server running at http://localhost:${port}`);
    });
    
  3. Run the server:

    node server.js
    

In this setup, your Node.js server will handle incoming requests, interact with Ollama's Llama 3 model, and return responses.

Conclusion

By following these steps, you've created a chat application that sends user messages to Ollama's Llama 3 model and displays the responses. This setup can be extended and customized based on your specific requirements and the features offered by the Llama 3 model.

Feel free to explore and enhance the functionality of your chat application. Happy coding!

The above is the detailed content of Building a Chat Application with Ollama&#s Llama odel Using JavaScript, HTML, and CSS. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn